121 research outputs found
A versatile functional interaction between electrically silent K V subunits and K V 7 potassium channels
Voltage-gated K+ (KV) channels govern K+ ion flux across cell membranes in response to changes in membrane potential. They are formed by the assembly of four subunits, typically from the same family. Electrically silent KV channels (KVS), however, are unable to conduct currents on their own. It has been assumed that these KVS must obligatorily assemble with subunits from the KV2 family into heterotetrameric channels, thereby giving rise to currents distinct from those of homomeric KV2 channels. Herein, we show that KVS subunits indeed also modulate the activity, biophysical properties and surface expression of recombinant KV7 isoforms in a subunit-specific manner. Employing co-immunoprecipitation, and proximity labelling, we unveil the spatial coexistence of KVS and KV7 within a single protein complex. Electrophysiological experiments further indicate functional interaction and probably heterotetramer formation. Finally, single-cell transcriptomic analyses identify native cell types in which this KVS and KV7 interaction may occur. Our findings demonstrate that KV cross-family interaction is much more versatile than previously thought—possibly serving nature to shape potassium conductance to the needs of individual cell types
The Ensemble Photometric Variability of ~25000 Quasars in the Sloan Digital Sky Survey
Using a sample of over 25000 spectroscopically confirmed quasars from the
Sloan Digital Sky Survey, we show how quasar variability in the rest frame
optical/UV regime depends upon rest frame time lag, luminosity, rest
wavelength, redshift, the presence of radio and X-ray emission, and the
presence of broad absorption line systems. The time dependence of variability
(the structure function) is well-fit by a single power law on timescales from
days to years. There is an anti-correlation of variability amplitude with rest
wavelength, and quasars are systematically bluer when brighter at all
redshifts. There is a strong anti-correlation of variability with quasar
luminosity. There is also a significant positive correlation of variability
amplitude with redshift, indicating evolution of the quasar population or the
variability mechanism. We parameterize all of these relationships. Quasars with
RASS X-ray detections are significantly more variable (at optical/UV
wavelengths) than those without, and radio loud quasars are marginally more
variable than their radio weak counterparts. We find no significant difference
in the variability of quasars with and without broad absorption line troughs.
Models involving multiple discrete events or gravitational microlensing are
unlikely by themselves to account for the data. So-called accretion disk
instability models are promising, but more quantitative predictions are needed.Comment: 41 pages, 21 figures, AASTeX, Accepted for publication in Ap
Investigating ChaMPlane X-ray sources in the Galactic Bulge with Magellan LDSS2 spectra
We have carried out optical and X-ray spectral analyses on a sample of 136
candidate optical counterparts of X-ray sources found in five Galactic-bulge
fields included in our Chandra Multi-wavelength Plane Survey. We use a
combination of optical spectral fitting and quantile X-ray analysis to obtain
the hydrogen column density towards each object, and a three-dimensional dust
model of the Galaxy to estimate the most probable distance in each case. We
present the discovery of a population of stellar coronal emission sources,
likely consisting of pre-main sequence, young main sequence and main sequence
stars, as well as a component of active binaries of RS CVn or BY Dra type. We
identify one candidate quiescent low-mass X-ray binary with a sub-giant
companion; we note that this object may also be an RS CVn system. We report the
discovery of three new X-ray detected cataclysmic variables (CVs) in the
direction of the Galactic Center (at distances ~2kpc). This number is in excess
of predictions made with a simple CV model based on a local CV space density of
<~ 10^-5 pc^-3, and a scale height ~200pc. We discuss several possible reasons
for this observed excess.Comment: 41 pages, 11 figures. Accepted for publication in Astrophysical
Journal, September 10 editio
AMI observations of Lynds Dark Nebulae: further evidence for anomalous cm-wave emission
Observations at 14.2 to 17.9 GHz made with the AMI Small Array towards
fourteen Lynds Dark Nebulae with a resolution of 2' are reported. These sources
are selected from the SCUBA observations of Visser et al. (2001) as small
angular diameter clouds well matched to the synthesized beam of the AMI Small
Array. Comparison of the AMI observations with radio observations at lower
frequencies with matched uv-plane coverage is made, in order to search for any
anomalous excess emission which can be attributed to spinning dust. Possible
emission from spinning dust is identified as a source within a 2' radius of the
Scuba position of the Lynds dark nebula, exhibiting an excess with respect to
lower frequency radio emission. We find five sources which show a possible
spinning dust component in their spectra. These sources have rising spectral
indices in the frequency range 14.2--17.9 GHz. Of these five one has already
been reported, L1111, we report one new definite detection, L675, and three new
probable detections (L944, L1103 and L1246). The relative certainty of these
detections is assessed on the basis of three criteria: the extent of the
emission, the coincidence of the emission with the Scuba position and the
likelihood of alternative explanations for the excess. Extended microwave
emission makes the likelihood of the anomalous emission arising as a
consequence of a radio counterpart to a protostar or a proto-planetary disk
unlikely. We use a 2' radius in order to be consistent with the IRAS
identifications of dark nebulae (Parker 1988), and our third criterion is used
in the case of L1103 where a high flux density at 850 microns relative to the
FIR data suggests a more complicated emission spectrum.Comment: submitted MNRA
The Clustering of Luminous Red Galaxies in the Sloan Digital Sky Survey Imaging Data
We present the 3D real space clustering power spectrum of a sample of
\~600,000 luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey
(SDSS), using photometric redshifts. This sample of galaxies ranges from
redshift z=0.2 to 0.6 over 3,528 deg^2 of the sky, probing a volume of 1.5
(Gpc/h)^3, making it the largest volume ever used for galaxy clustering
measurements. We measure the angular clustering power spectrum in eight
redshift slices and combine these into a high precision 3D real space power
spectrum from k=0.005 (h/Mpc) to k=1 (h/Mpc). We detect power on gigaparsec
scales, beyond the turnover in the matter power spectrum, on scales
significantly larger than those accessible to current spectroscopic redshift
surveys. We also find evidence for baryonic oscillations, both in the power
spectrum, as well as in fits to the baryon density, at a 2.5 sigma confidence
level. The statistical power of these data to constrain cosmology is ~1.7 times
better than previous clustering analyses. Varying the matter density and baryon
fraction, we find \Omega_M = 0.30 \pm 0.03, and \Omega_b/\Omega_M = 0.18 \pm
0.04, The detection of baryonic oscillations also allows us to measure the
comoving distance to z=0.5; we find a best fit distance of 1.73 \pm 0.12 Gpc,
corresponding to a 6.5% error on the distance. These results demonstrate the
ability to make precise clustering measurements with photometric surveys
(abridged).Comment: 23 pages, 27 figures, submitted to MNRA
Optical and Radio Properties of Extragalactic Sources Observed by the FIRST and SDSS Surveys
We discuss the optical and radio properties of 30,000 FIRST sources
positionally associated with an SDSS source in 1230 deg of sky. The
majority (83%) of the FIRST sources identified with an SDSS source brighter
than r=21 are optically resolved. We estimate an upper limit of 5% for the
fraction of quasars with broad-band optical colors indistinguishable from those
of stars. The distribution of quasars in the radio flux -- optical flux plane
supports the existence of the "quasar radio-dichotomy"; 8% of all quasars with
i<18.5 are radio-loud and this fraction seems independent of redshift and
optical luminosity. The radio-loud quasars have a redder median color by 0.08
mag, and a 3 times larger fraction of objects with red colors. FIRST galaxies
represent 5% of all SDSS galaxies with r<17.5, and 1% for r<20, and are
dominated by red galaxies. Magnitude and redshift limited samples show that
radio galaxies have a different optical luminosity distribution than non-radio
galaxies selected by the same criteria; when galaxies are further separated by
their colors, this result remains valid for both blue and red galaxies. The
distributions of radio-to-optical flux ratio are similar for blue and red
galaxies in redshift-limited samples; this similarity implies that the
difference in their luminosity functions, and resulting selection effects, are
the dominant cause for the preponderance of red radio galaxies in flux-limited
samples. We confirm that the AGN-to-starburst galaxy number ratio increases
with radio flux, and find that radio emission from AGNs is more concentrated
than radio emission from starburst galaxies (abridged).Comment: submitted to AJ, color gif figures, PS figures available from
[email protected]
Cross-correlation of CMB with large-scale structure: weak gravitational lensing
We present the results of a search for gravitational lensing of the cosmic
microwave background (CMB) in cross-correlation with the projected density of
luminous red galaxies (LRGs). The CMB lensing reconstruction is performed using
the first year of Wilkinson Microwave Anisotropy Probe (WMAP) data, and the
galaxy maps are obtained using the Sloan Digital Sky Survey (SDSS) imaging
data. We find no detection of lensing; our constraint on the galaxy bias
derived from the galaxy-convergence cross-spectrum is
(, statistical), as compared to the expected result of
for this sample. We discuss possible instrument-related systematic errors and
show that the Galactic foregrounds are not important. We do not find any
evidence for point source or thermal Sunyaev-Zel'dovich effect contamination.Comment: 24 pages, 13 figs; matches PRD accepted versio
The neuropathology of fatal encephalomyelitis in human Borna virus infection
After many years of controversy, there is now recent and solid evidence that classical Borna disease virus 1 (BoDV-1) can infect humans. On the basis of six brain autopsies, we provide the first systematic overview on BoDV-1 tissue distribution and the lesion pattern in fatal BoDV-1-induced encephalitis. All brains revealed a non-purulent, lymphocytic sclerosing panencephalomyelitis with detection of BoDV-1-typical eosinophilic, spherical intranuclear Joest-Degen inclusion bodies. While the composition of histopathological changes was constant, the inflammatory distribution pattern varied interindividually, affecting predominantly the basal nuclei in two patients, hippocampus in one patient, whereas two patients showed a more diffuse distribution. By immunohistochemistry and RNA in situ hybridization, BoDV-1 was detected in all examined brain tissue samples. Furthermore, infection of the peripheral nervous system was observed. This study aims at raising awareness to human bornavirus encephalitis as differential diagnosis in lymphocytic sclerosing panencephalomyelitis. A higher attention to human BoDV-1 infection by health professionals may likely increase the detection of more cases and foster a clearer picture of the disease
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
A very luminous magnetar-powered supernova associated with an ultra-long gamma-ray burst
A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been suggested1,2,3. They may originate in the explosion of stars with much larger radii than normal long gamma-ray bursts3,4 or in the tidal disruptions of a star3. No clear supernova had yet been associated with an ultra-long gamma-ray burst. Here we report that a supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. This supernova is more than 3 times more luminous than type Ic supernovae associated with long gamma-ray bursts5,6,7, and its spectrum is distinctly different. The continuum slope resembles those of super-luminous supernovae8,9, but extends farther down into the rest-frame ultra-violet implying a low metal content. The light curve evolves much more rapidly than super-luminous supernovae. The combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae20,20a
- …