28 research outputs found

    TorsinA folding and N-linked glycosylation are sensitive to redox homeostasis

    Get PDF
    The Endoplasmic Reticulum (ER) is responsible for the folding and post-translational modification of secretory proteins, as well as for triaging misfolded proteins. During folding, there is a complex yet only partially understood interplay between disulfide bond formation, which is an enzyme catalyzed event in the oxidizing environment of the ER, along with other post-translational modifications (PTMs) and chaperone-supported protein folding. Here, we used the glycoprotein torsinA as a model substrate to explore the impact of ER redox homeostasis on PTMs and protein biogenesis. TorsinA is a AAA+ ATPase with unusual oligomeric properties and controversial functions. The deletion of a C-terminal glutamic acid residue (∆E) is associated with the development of Early-Onset Torsion Dystonia, a severe movement disorder. TorsinA differs from other AAA+ ATPases since it is an ER resident, and as a result of its entry into the ER torsinA contains two N-linked glycans and at least one disulfide bond. The role of these PTMs on torsinA biogenesis and function and the identity of the enzymes that catalyze them are poorly defined. Using a yeast torsinA expression system, we demonstrate that a specific protein disulfide isomerase, Pdi1, affects the folding and N-linked glycosylation of torsinA and torsinA∆E in a redox-dependent manner, suggesting that the acquisition of early torsinA folding intermediates is sensitive to perturbed interactions between Cys residues and the quality control machinery. We also highlight the role of specific Cys residues during torsinA biogenesis and demonstrate that torsinA∆E is more sensitive than torsinA when these Cys residues are mutated.Fil: Honer, Jonas. University of Pittsburgh; Estados UnidosFil: Niemeyer, Katie M.. University of Pittsburgh; Estados UnidosFil: Fercher, Christian. The University of Queensland; AustraliaFil: Diez Tissera, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Jaberolansar, Noushin. The University of Queensland; AustraliaFil: Jafrani, Yohaann M.A.. The University of Queensland; AustraliaFil: Zhou, Chun. The University of Queensland; AustraliaFil: Caramelo, Julio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shewan, Annette M.. The University of Queensland; AustraliaFil: Schulz, Benjamin L.. The University of Queensland; AustraliaFil: Brodsky, Jeffrey L.. University of Pittsburgh; Estados UnidosFil: Zacchi, Lucia Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. University of Pittsburgh; Estados Unidos. The University of Queensland; Australi

    Smart urea ionic co-crystals with enhanced urease inhibition activity for improved nitrogen cycle management

    No full text
    A smart ionic co-crystal of urea with KCl and ZnCl2has been obtained in two polymorphic modifications via mechanochemical and solution methods and proven to be a very efficient urease inhibitor while, simultaneously, able to provide soil nutrients to complement N supply

    Mechanosynthesis of Magnesium and Calcium Salt–Urea Ionic Cocrystal Fertilizer Materials for Improved Nitrogen Management

    No full text
    Only 47% of the total fertilizer nitrogen applied to the environment is taken up by the plants whereas approximately 40% of the total fertilizer nitrogen lost to the environment reverts back into unreactive atmospheric dinitrogen that greatly affects the global nitrogen cycle including increased energy consumption for NH<sub>3</sub> synthesis, as well as accumulation of nitrates in drinking water. In this letter, we provide a mechanochemical method of inorganic magnesium and calcium salt–urea ionic cocrystal synthesis to obtain enhanced stability nitrogen fertilizers. The solvent-free mechanochemical synthesis presented can result in a greater manufacturing process sustainability by reducing or eliminating the need for solution handling and evaporation. NH<sub>3</sub> emission testing suggests that urea ionic cocrystals are capable of decreasing NH<sub>3</sub> emissions to the environment when compared to pure urea, thus providing implications for a sustainable global solution to the management of the nitrogen cycle

    Toward generalizable prediction of antibody thermostability using machine learning on sequence and structure features

    No full text
    ABSTRACTOver the last three decades, the appeal for monoclonal antibodies (mAbs) as therapeutics has been steadily increasing as evident with FDA’s recent landmark approval of the 100th mAb. Unlike mAbs that bind to single targets, multispecific biologics (msAbs) have garnered particular interest owing to the advantage of engaging distinct targets. One important modular component of msAbs is the single-chain variable fragment (scFv). Despite the exquisite specificity and affinity of these scFv modules, their relatively poor thermostability often hampers their development as a potential therapeutic drug. In recent years, engineering antibody sequences to enhance their stability by mutations has gained considerable momentum. As experimental methods for antibody engineering are time-intensive, laborious and expensive, computational methods serve as a fast and inexpensive alternative to conventional routes. In this work, we show two machine learning approaches – one with pre-trained language models (PTLM) capturing functional effects of sequence variation, and second, a supervised convolutional neural network (CNN) trained with Rosetta energetic features – to better classify thermostable scFv variants from sequence. Both of these models are trained over temperature-specific data (TS50 measurements) derived from multiple libraries of scFv sequences. On out-of-distribution (refers to the fact that the out-of-distribution sequnes are blind to the algorithm) sequences, we show that a sufficiently simple CNN model performs better than general pre-trained language models trained on diverse protein sequences (average Spearman correlation coefficient, [Formula: see text], of 0.4 as opposed to 0.15). On the other hand, an antibody-specific language model performs comparatively better than the CNN model on the same task ([Formula: see text] 0.52). Further, we demonstrate that for an independent mAb with available thermal melting temperatures for 20 experimentally characterized thermostable mutations, these models trained on TS50 data could identify 18 residue positions and 5 identical amino-acid mutations showing remarkable generalizability. Our results suggest that such models can be broadly applicable for improving the biological characteristics of antibodies. Further, transferring such models for alternative physicochemical properties of scFvs can have potential applications in optimizing large-scale production and delivery of mAbs or bsAbs

    [18F]RO948 tau positron emission tomography in genetic and sporadic frontotemporal dementia syndromes

    No full text
    Purpose: To examine [18F]RO948 retention in FTD, sampling the underlying protein pathology heterogeneity. Methods: A total of 61 individuals with FTD (n = 35), matched cases of AD (n = 13) and Aβ-negative cognitively unimpaired individuals (n = 13) underwent [18F]RO948PET and MRI. FTD included 21 behavioral variant FTD (bvFTD) cases, 11 symptomatic C9orf72 mutation carriers, one patient with non-genetic bvFTD-ALS, one individual with bvFTD due to a GRN mutation, and one due to a MAPT mutation (R406W). Tracer retention was examined using a region-of-interest and voxel-wise approaches. Two individuals (bvFTD due to C9orf72) underwent postmortem neuropathological examination. Tracer binding was additionally assessed in vitro using [3H]RO948 autoradiography in six separate cases. Results: [18F]RO948 retention across ROIs was clearly lower than in AD and comparable to that in Aβ-negative cognitively unimpaired individuals. Only minor loci of tracer retention were seen in bvFTD; these did not overlap with the observed cortical atrophy in the cases, the expected pattern of atrophy, nor the expected or verified protein pathology distribution. Autoradiography analyses showed no specific [3H]RO948 binding. The R406W MAPT mutation carriers were clear exceptions with AD-like retention levels and specific in-vitro binding. Conclusion: [18F]RO948 uptake is not significantly increased in the majority of FTD patients, with a clear exception being specific MAPT mutations

    [18F]RO948 tau positron emission tomography in genetic and sporadic frontotemporal dementia syndromes

    Get PDF
    Purpose: To examine [18F]RO948 retention in FTD, sampling the underlying protein pathology heterogeneity. Methods: A total of 61 individuals with FTD (n = 35), matched cases of AD (n = 13) and Aβ-negative cognitively unimpaired individuals (n = 13) underwent [18F]RO948PET and MRI. FTD included 21 behavioral variant FTD (bvFTD) cases, 11 symptomatic C9orf72 mutation carriers, one patient with non-genetic bvFTD-ALS, one individual with bvFTD due to a GRN mutation, and one due to a MAPT mutation (R406W). Tracer retention was examined using a region-of-interest and voxel-wise approaches. Two individuals (bvFTD due to C9orf72) underwent postmortem neuropathological examination. Tracer binding was additionally assessed in vitro using [3H]RO948 autoradiography in six separate cases. Results: [18F]RO948 retention across ROIs was clearly lower than in AD and comparable to that in Aβ-negative cognitively unimpaired individuals. Only minor loci of tracer retention were seen in bvFTD; these did not overlap with the observed cortical atrophy in the cases, the expected pattern of atrophy, nor the expected or verified protein pathology distribution. Autoradiography analyses showed no specific [3H]RO948 binding. The R406W MAPT mutation carriers were clear exceptions with AD-like retention levels and specific in-vitro binding. Conclusion: [18F]RO948 uptake is not significantly increased in the majority of FTD patients, with a clear exception being specific MAPT mutations

    Mitochondrial Dysfunction and Synaptic Transmission Failure in Alzheimer’s Disease

    No full text

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    No full text
    corecore