226 research outputs found

    Missing in Action? Electronic Gaming Machines in Gambling Studies Research

    Full text link
    In the past thirty years casinos across the world have become dominated by the rise of “electronic gaming machines” (EGMs). Expanding with tremendous speed, this technology has arguably become the dominant form of non-online gambling around the world at time of writing (DeMichele, 2017; Schwartz, 2018). EGMs are also noted as being one of the most harmful forms of gambling, with significant numbers of players betting beyond their financial limits (MacLaren et al, 2012; Stewart & Wohl, 2013), spending a disproportionate amount of time playing (Cummings, 1999; Ballon, 2005; Schüll, 2012; cf. Dickerson, 1996), becoming disconnected from the world outside of the “zone” (Schüll, 2012) of gambling play, and even becoming bankrupt or otherwise financially crippled as a result of their use (Petry, 2003; Scarf et al, 2011). Using metadata from Web of Science and Scopus databases, we analysed peer-reviewed gambling research produced in Australia, New Zealand, North America and the UK published between 1996 and 2016. Surprisingly, we found that the overwhelming of majority of articles do not specifically address EGMs as the most popular and pervasive gambling technology available. Our paper teases out some concerning implications of this finding for the interdisciplinary field of gambling studies

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Prevalence and Clinical Significance of HIV Drug Resistance Mutations by Ultra-Deep Sequencing in Antiretroviral-Naïve Subjects in the CASTLE Study

    Get PDF
    CASTLE compared the efficacy of atazanavir/ritonavir with lopinavir/ritonavir, each in combination with tenofovir-emtricitabine in ARV-naïve subjects from 5 continents.Determine the baseline rate and clinical significance of TDR mutations using ultra-deep sequencing (UDS) in ARV-naïve subjects in CASTLE.A case control study was performed on baseline samples for all 53 subjects with virologic failures (VF) at Week 48 and 95 subjects with virologic successes (VS) randomly selected and matched by CD4 count and viral load. UDS was performed using 454 Life Sciences/Roche technology.Of 148 samples, 141 had successful UDS (86 subtype B, 55 non-B subtypes). Overall, 30.5% of subjects had a TDR mutation at baseline; 15.6% only had TDR(s) at <20% of the viral population. There was no difference in the rate of TDRs by B (30.2%) or non-B subtypes (30.9%). VF (51) and VS (90) had similar rates of any TDRs (25.5% vs. 33.3%), NNRTI TDRs (11.1% vs.11.8%) and NRTI TDRs (24.4% vs. 25.5%). Of 9 (6.4%) subjects with M184V/I (7 at <20% levels), 6 experienced VF. 16 (11.3%) subjects had multiple TAMs, and 7 experienced VF. 3 (2.1%) subjects had both multiple TAMs+M184V, and all experienced VF. Of 14 (9.9%) subjects with PI TDRs (11 at <20% levels): only 1 experienced virologic failure. The majority of PI TDRs were found in isolation (e.g. 46I) at <20% levels, and had low resistance algorithm scores.Among a representative sample of ARV-naïve subjects in CASTLE, TDR mutations were common (30.5%); B and non-B subtypes had similar rates of TDRs. Subjects with multiple PI TDRs were infrequent. Overall, TDRs did not affect virologic response for subjects on a boosted PI by week 48; however, a small subset of subjects with extensive NRTI backbone TDR patterns experienced virologic failure

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Hidden Drug Resistant HIV to Emerge in the Era of Universal Treatment Access in Southeast Asia

    Get PDF
    Background: Universal access to first-line antiretroviral therapy (ART) for HIV infection is becoming more of a reality in most low and middle income countries in Asia. However, second-line therapies are relatively scarce. Methods and Findings: We developed a mathematical model of an HIV epidemic in a Southeast Asian setting and used it to forecast the impact of treatment plans, without second-line options, on the potential degree of acquisition and transmission of drug resistant HIV strains. We show that after 10 years of universal treatment access, up to 20 % of treatment-naïve individuals with HIV may have drug-resistant strains but it depends on the relative fitness of viral strains. Conclusions: If viral load testing of people on ART is carried out on a yearly basis and virological failure leads to effective second-line therapy, then transmitted drug resistance could be reduced by 80%. Greater efforts are required for minimizing first-line failure, to detect virological failure earlier, and to procure access to second-line therapies

    Estimating Genetic Ancestry Proportions from Faces

    Get PDF
    Ethnicity can be a means by which people identify themselves and others. This type of identification mediates many kinds of social interactions and may reflect adaptations to a long history of group living in humans. Recent admixture in the US between groups from different continents, and the historically strong emphasis on phenotypic differences between members of these groups, presents an opportunity to examine the degree of concordance between estimates of group membership based on genetic markers and on visually-based estimates of facial features. We first measured the degree of Native American, European, African and East Asian genetic admixture in a sample of 14 self-identified Hispanic individuals, chosen to cover a broad range of Native American and European genetic admixture proportions. We showed frontal and side-view photographs of the 14 individuals to 241 subjects living in New Mexico, and asked them to estimate the degree of NA admixture for each individual. We assess the overall concordance for each observer based on an aggregated measure of the difference between the observer and the genetic estimates. We find that observers reach a significantly higher degree of concordance than expected by chance, and that the degree of concordance as well as the direction of the discrepancy in estimates differs based on the ethnicity of the observer, but not on the observers' age or sex. This study highlights the potentially high degree of discordance between physical appearance and genetic measures of ethnicity, as well as how perceptions of ethnic affiliation are context-specific. We compare our findings to those of previous studies and discuss their implications

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    The effect of body mass index on global brain volume in middle-aged adults: a cross sectional study

    Get PDF
    BACKGROUND: Obesity causes or exacerbates a host of medical conditions, including cardiovascular, pulmonary, and endocrine diseases. Recently obesity in elderly women was associated with greater risk of dementia, white matter ischemic changes, and greater brain atrophy. The purpose of this study was to determine whether body type affects global brain volume, a marker of atrophy, in middle-aged men and women. METHODS: T1-weighted 3D volumetric magnetic resonance imaging was used to assess global brain volume for 114 individuals 40 to 66 years of age (average = 54.2 years; standard deviation = 6.6 years; 43 men and 71 women). Total cerebrospinal fluid and brain volumes were obtained with an automated tissue segmentation algorithm. A regression model was used to determine the effect of age, body mass index (BMI), and other cardiovascular risk factors on brain volume and cognition. RESULTS: Age and BMI were each associated with decreased brain volume. BMI did not predict cognition in this sample; however elevated diastolic blood pressure was associated with poorer episodic learning performance. CONCLUSION: These findings suggest that middle-aged obese adults may already be experiencing differentially greater brain atrophy, and may potentially be at greater risk for future cognitive decline

    Mapping alterations to the endogenous elemental distribution within the lateral ventricles and choroid plexus in brain disorders using X-ray fluorescence imaging

    Get PDF
    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl-, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl- and Fe while K+ levels increase further from the ventricle as Cl- levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl- surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models

    Penetration of the Stigma and Style Elicits a Novel Transcriptome in Pollen Tubes, Pointing to Genes Critical for Growth in a Pistil

    Get PDF
    Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell–cell interaction
    corecore