144 research outputs found

    Multiple Sclerosis: Are Protective Immune Mechanisms Compromised by a Complex Infectious Background?

    Get PDF
    The immunological background of multiple sclerosis (MS) manifests as an altered reactivity against a diverse range of infections, particularly with the Epstein-Barr virus. Although this could be only an epiphenomenon of a more generalised dysfunction of the immune system in MS, it is also possible that a complex infectious background forms the basis of a specific immune dysregulation finally causing the disease. It is thus suggested that the complex infectious background bears the key for an understanding of the immune pathogenesis of the disease. It appears probable that improved standards of hygiene cause regulatory defects in the immune system, allowing the abnormal expression of human endogenous retroviral (HERV) genes. On the basis of epidemiological observations we describe how a failure of expansion or an eclipse of a subfraction of self-antigen-specific CD8+ T cells mediating immune repair, and a deleterious mode of action of HERV gene products, could underlie the pathogenesis of MS

    Chronic inflammation as a manifestation of defects in immunoregulatory networks: implications for novel therapies based on microbial products

    Get PDF
    Based on a unifying theory presented here, it is predicted that the immune defects resulting in chronic inflammation rather than effective immune responses could be rectified by the therapeutic use of agents prepared from micro-organisms. With appropriate molecular patterns, these should be able to induce protective immunoregulatory networks or to reprogramme defective ones. In contrast to acute inflammation, chronic inflammation appears to have no beneficial role, but is a state of sustained immune reactivity in the presence or progression of a disease process. This results in an escalating cycle of tissue damage followed by unproductive tissue repair, breaks in self-tolerance, malignant transformation or deleterious changes in tissue morphology and function. Such inappropriate immune reactivity is an underlying characteristic, either in initiation or maintenance, of a diverse range of disease states including chronic infection, autoimmunity, allergy, cancer, vascular disease and metabolic alterations. Evidence is presented that the inappropriate immune reactivity is due, at least to some extent, to failures in the establishment of immunoregulatory networks as a result of hygiene-related factors. Such networks are the result of activation of antigen-presenting cells, principally dendritic cells, by molecular patterns of micro-organisms encountered sequentially during life and establishing the ‘biography’ of the immune system.Laboratorio de Investigaciones del Sistema Inmun

    Chronic inflammation as a manifestation of defects in immunoregulatory networks: implications for novel therapies based on microbial products

    Get PDF
    Based on a unifying theory presented here, it is predicted that the immune defects resulting in chronic inflammation rather than effective immune responses could be rectified by the therapeutic use of agents prepared from micro-organisms. With appropriate molecular patterns, these should be able to induce protective immunoregulatory networks or to reprogramme defective ones. In contrast to acute inflammation, chronic inflammation appears to have no beneficial role, but is a state of sustained immune reactivity in the presence or progression of a disease process. This results in an escalating cycle of tissue damage followed by unproductive tissue repair, breaks in self-tolerance, malignant transformation or deleterious changes in tissue morphology and function. Such inappropriate immune reactivity is an underlying characteristic, either in initiation or maintenance, of a diverse range of disease states including chronic infection, autoimmunity, allergy, cancer, vascular disease and metabolic alterations. Evidence is presented that the inappropriate immune reactivity is due, at least to some extent, to failures in the establishment of immunoregulatory networks as a result of hygiene-related factors. Such networks are the result of activation of antigen-presenting cells, principally dendritic cells, by molecular patterns of micro-organisms encountered sequentially during life and establishing the ‘biography’ of the immune system.Laboratorio de Investigaciones del Sistema Inmun

    Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders

    Get PDF
    Background: De novo missense variants in CDK13 have been described as the cause of syndromic congenital heart defects in seven individuals ascertained from a large congenital cardiovascular malformations cohort. We aimed to further define the phenotypic and molecular spectrum of this newly described disorder. Methods: To minimise ascertainment bias, we recruited nine additional individuals with CDK13 pathogenic variants from clinical and research exome laboratory sequencing cohorts. Each individual underwent dysmorphology exam and comprehensive medical history review. Results: We demonstrate greater than expected phenotypic heterogeneity, including 33% (3/9) of individuals without structural heart disease on echocardiogram. There was a high penetrance for a unique constellation of facial dysmorphism and global developmental delay, as well as less frequently seen renal and sacral anomalies. Two individuals had novel CDK13 variants (p.Asn842Asp, p.Lys734Glu), while the remaining seven unrelated individuals had a recurrent, previously published p.Asn842Ser variant. Summary of all variants published to date demonstrates apparent restriction of pathogenic variants to the protein kinase domain with clustering in the ATP and magnesium binding sites. Conclusions: Here we provide detailed phenotypic and molecular characterisation of individuals with pathogenic variants in CDK13 and propose management guidelines based upon the estimated prevalence of anomalies identified. Keywords: CDK13, CHDFIDD, De novo variant, Neurodevelopmental disorders, Agenesis of the corpus callosum, Hypertelorism, Developmental delay, Cyclin-dependent kinase, Undiagnosed Diseases Networ

    PRAISE: providing a roadmap for automated infection surveillance in Europe

    Get PDF
    Introduction: Healthcare-associated infections (HAI) are among the most common adverse events of medical care. Surveillance of HAI is a key component of successful infection prevention programmes. Conventional surveillance - manual chart review - is resource intensive and limited by concerns regarding interrater reliability. This has led to the development and use of automated surveillance (AS). Many AS systems are the product of in-house development efforts and heterogeneous in their design and methods. With this roadmap, the PRAISE network aims to provide guidance on how to move AS from the research setting to large-scale implementation, and how to ensure the delivery of surveillance data that are uniform and useful for improvement of quality of care. Methods: The PRAISE network brings together 30 experts from ten European countries. This roadmap is based on the outcome of two workshops, teleconference meetings and review by an independent panel of international experts. Results: This roadmap focuses on the surveillance of HAI within networks of healthcare facilities for the purpose of comparison, prevention and quality improvement initiatives. The roadmap does the following: discusses the selection of surveillance targets, different organizational and methodologic approaches and their advantages, disadvantages and risks; defines key performance requirements of AS systems and suggestions for their design; provides guidance on successful implementation and maintenance; and discusses areas of future research and training requirements for the infection prevention and related disciplines. The roadmap is supported by accompanying documents regarding the governance and information technology aspects of implementing AS. Conclusions: Large-scale implementation of AS requires guidance and coordination within and across surveillance networks. Transitions to large-scale AS entail redevelopment of surveillance methods and their interpretation, intensive dialogue with stakeholders and the investment of considerable resources. This roadmap can be used to guide future steps towards implementation, including designing solutions for AS and practical guidance checklists

    Erythrocyte and Porcine Intestinal Glycosphingolipids Recognized by F4 Fimbriae of Enterotoxigenic Escherichia coli

    Get PDF
    Enterotoxigenic F4-fimbriated Escherichia coli is associated with diarrheal disease in neonatal and postweaning pigs. The F4 fimbriae mediate attachment of the bacteria to the pig intestinal epithelium, enabling an efficient delivery of diarrhea-inducing enterotoxins to the target epithelial cells. There are three variants of F4 fimbriae designated F4ab, F4ac and F4ad, respectively, having different antigenic and adhesive properties. In the present study, the binding of isolated F4ab, F4ac and F4ad fimbriae, and F4ab/ac/ad-fimbriated E. coli, to glycosphingolipids from erythrocytes and from porcine small intestinal epithelium was examined, in order to get a comprehensive view of the F4-binding glycosphingolipids involved in F4-mediated hemagglutination and adhesion to the epithelial cells of porcine intestine. Specific interactions between the F4ab, F4ac and F4ad fimbriae and both acid and non-acid glycosphingolipids were obtained, and after isolation of binding-active glycosphingolipids and characterization by mass spectrometry and proton NMR, distinct carbohydrate binding patterns were defined for each fimbrial subtype. Two novel glycosphingolipids were isolated from chicken erythrocytes, and characterized as GalNAcα3GalNAcß3Galß4Glcß1Cer and GalNAcα3GalNAcß3Galß4GlcNAcß3Galß4Glcß1Cer. These two compounds, and lactosylceramide (Galß4Glcß1Cer) with phytosphingosine and hydroxy fatty acid, were recognized by all three variants of F4 fimbriae. No binding of the F4ad fimbriae or F4ad-fimbriated E. coli to the porcine intestinal glycosphingolipids occurred. However, for F4ab and F4ac two distinct binding patterns were observed. The F4ac fimbriae and the F4ac-expressing E. coli selectively bound to galactosylceramide (Galß1Cer) with sphingosine and hydroxy 24:0 fatty acid, while the porcine intestinal glycosphingolipids recognized by F4ab fimbriae and the F4ab-fimbriated bacteria were characterized as galactosylceramide, sulfatide (SO3-3Galß1Cer), sulf-lactosylceramide (SO3-3Galß4Glcß1Cer), and globotriaosylceramide (Galα4Galß4Glcß1Cer) with phytosphingosine and hydroxy 24:0 fatty acid. Finally, the F4ad fimbriae and the F4ad-fimbriated E. coli, but not the F4ab or F4ac subtypes, bound to reference gangliotriaosylceramide (GalNAcß4Galß4Glcß1Cer), gangliotetraosylceramide (Galß3GalNAcß4Galß4Glcß1Cer), isoglobotriaosylceramide (Galα3Galß4Glcß1Cer), and neolactotetraosylceramide (Galß4GlcNAcß3Galß4Glcß1Cer)

    The prevalence of stunting, overweight and obesity, and metabolic disease risk in rural South African children.

    Get PDF
    BACKGROUND: Low- to middle-income countries are undergoing a health transition with non-communicable diseases contributing substantially to disease burden, despite persistence of undernutrition and infectious diseases. This study aimed to investigate the prevalence and patterns of stunting and overweight/obesity, and hence risk for metabolic disease, in a group of children and adolescents in rural South Africa. METHODS: A cross-sectional growth survey was conducted involving 3511 children and adolescents 1-20 years, selected through stratified random sampling from a previously enumerated population living in Agincourt sub-district, Mpumalanga Province, South Africa. Anthropometric measurements including height, weight and waist circumference were taken using standard procedures. Tanner pubertal assessment was conducted among adolescents 9-20 years. Growth z-scores were generated using 2006 WHO standards for children up to five years and 1977 NCHS/WHO reference for older children. Overweight and obesity for those or = 25 and > or = 30 kg/m2 for overweight and obesity respectively were used for those > or = 18 years. Waist circumference cut-offs of > or = 94 cm for males and > or = 80 cm for females and waist-to-height ratio of 0.5 for both sexes were used to determine metabolic disease risk in adolescents. RESULTS: About one in five children aged 1-4 years was stunted; one in three of those aged one year. Concurrently, the prevalence of combined overweight and obesity, almost non-existent in boys, was substantial among adolescent girls, increasing with age and reaching approximately 20-25% in late adolescence. Central obesity was prevalent among adolescent girls, increasing with sexual maturation and reaching a peak of 35% at Tanner Stage 5, indicating increased risk for metabolic disease. CONCLUSIONS: The study highlights that in transitional societies, early stunting and adolescent obesity may co-exist in the same socio-geographic population. It is likely that this profile relates to changes in nutrition and diet, but variation in factors such as infectious disease burden and physical activity patterns, as well as social influences, need to be investigated. As obesity and adult short stature are risk factors for metabolic syndrome and Type 2 diabetes, this combination of early stunting and adolescent obesity may be an explosive combination

    Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy

    Get PDF
    Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway, SLF2 and SMC5, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability
    corecore