131 research outputs found

    Design and evolution of enzymes for the Morita-Baylis-Hillman reaction

    Get PDF
    Please click Additional Files below to see the full abstract

    Predicting new protein conformations from molecular dynamics simulation conformational landscapes and machine learning

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-08-05, rev-recd 2021-01-21, accepted 2021-02-23, pub-electronic 2021-03-03, pub-print 2021-08Article version: VoRPublication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Id: http://dx.doi.org/10.13039/501100000268; Grant(s): BB/M017702/1Abstract: Molecular dynamics (MD) simulations are a popular method of studying protein structure and function, but are unable to reliably sample all relevant conformational space in reasonable computational timescales. A range of enhanced sampling methods are available that can improve conformational sampling, but these do not offer a complete solution. We present here a proof‐of‐principle method of combining MD simulation with machine learning to explore protein conformational space. An autoencoder is used to map snapshots from MD simulations onto a user‐defined conformational landscape defined by principal components analysis or specific structural features, and we show that we can predict, with useful accuracy, conformations that are not present in the training data. This method offers a new approach to the prediction of new low energy/physically realistic structures of conformationally dynamic proteins and allows an alternative approach to enhanced sampling of MD simulations

    Interplay between chromophore binding and domain assembly by the B<sub>12</sub>-dependent photoreceptor protein, CarH.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-05-01, epub 2021-05-05Publication status: PublishedFunder: Biotechnology and Biological Sciences Research Council; Grant(s): BB/L002655/1, BB/L016486/1, BB/M011208/1Organisms across the natural world respond to their environment through the action of photoreceptor proteins. The vitamin B12-dependent photoreceptor, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids to protect against photo-oxidative stress. The binding of B12 to CarH monomers in the dark results in the formation of a homo-tetramer that complexes with DNA; B12 photochemistry results in tetramer dissociation, releasing DNA for transcription. Although the details of the response of CarH to light are beginning to emerge, the biophysical mechanism of B12-binding in the dark and how this drives domain assembly is poorly understood. Here - using a combination of molecular dynamics simulations, native ion mobility mass spectrometry and time-resolved spectroscopy - we reveal a complex picture that varies depending on the availability of B12. When B12 is in excess, its binding drives structural changes in CarH monomers that result in the formation of head-to-tail dimers. The structural changes that accompany these steps mean that they are rate-limiting. The dimers then rapidly combine to form tetramers. Strikingly, when B12 is scarcer, as is likely in nature, tetramers with native-like structures can form without a B12 complement to each monomer, with only one apparently required per head-to-tail dimer. We thus show how a bulky chromophore such as B12 shapes protein/protein interactions and in turn function, and how a protein can adapt to a sub-optimal availability of resources. This nuanced picture should help guide the engineering of B12-dependent photoreceptors as light-activated tools for biomedical applications

    Workshop—Predicting the Structure of Biological Molecules

    Get PDF
    This April, in Cambridge (UK), principal investigators from the Mathematical Biology Group of the Medical Research Council's National Institute of Medical Research organized a workshop in structural bioinformatics at the Centre for Mathematical Sciences. Bioinformatics researchers of several nationalities from labs around the country presented and discussed their computational work in biomolecular structure prediction and analysis, and in protein evolution. The meeting was intensive and lively and gave attendees an overview of the healthy state of protein bioinformatics in the UK

    Structural basis of terephthalate recognition by solute binding protein TphC

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-03-24, accepted 2021-10-06, registration 2021-10-12, pub-electronic 2021-10-29, online 2021-10-29, collection 2021-12Publication status: PublishedFunder: Commonwealth Scholarship Commission (CSC); doi: https://doi.org/10.13039/501100000867; Grant(s): INCN-2018-57Funder: RCUK | Engineering and Physical Sciences Research Council (EPSRC); doi: https://doi.org/10.13039/501100000266; Grant(s): EP/M013219/1, EP/023755/1Funder: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC); doi: https://doi.org/10.13039/501100000268; Grant(s): BB/M011208/1, BB/M011208/1, BB/P01738X/1Abstract: Biological degradation of Polyethylene terephthalate (PET) plastic and assimilation of the corresponding monomers ethylene glycol and terephthalate (TPA) into central metabolism offers an attractive route for bio-based molecular recycling and bioremediation applications. A key step is the cellular uptake of the non-permeable TPA into bacterial cells which has been shown to be dependent upon the presence of the key tphC gene. However, little is known from a biochemical and structural perspective about the encoded solute binding protein, TphC. Here, we report the biochemical and structural characterisation of TphC in both open and TPA-bound closed conformations. This analysis demonstrates the narrow ligand specificity of TphC towards aromatic para-substituted dicarboxylates, such as TPA and closely related analogues. Further phylogenetic and genomic context analysis of the tph genes reveals homologous operons as a genetic resource for future biotechnological and metabolic engineering efforts towards circular plastic bio-economy solutions

    Minimization of dynamic effects in the evolution of dihydrofolate reductase

    Get PDF
    Protein isotope labeling is a powerful technique to probe functionally important motions in enzyme catalysis and can be applied to investigate the conformational dynamics of proteins. Previous investigations have indicated that dynamic coupling is detrimental to catalysis by dihydrofolate reductase (DHFR) from the mesophile Escherichia coli (EcDHFR). Comparison of DHFRs from organisms adapted to survive at a wide range of temperatures suggests that dynamic coupling in DHFR catalysis has been minimized during evolution; it arises from reorganizational motions needed to facilitate charge transfer events. Contrary to the behaviour observed for the DHFR from the moderate thermophile Geobacillus stearothermophilus (BsDHFR), the chemical transformation catalyzed by the cold-adapted bacterium Moritella profunda (MpDHFR) is only weakly affected by protein isotope substitutions at low temperatures, but the isotopically substituted enzyme is a substantially inferior catalyst at higher, non-physiological temperatures. QM/MM studies revealed that this behaviour is caused by the enzyme’s structural sensitivity to temperature changes, which enhances unfavorable dynamic coupling at higher temperatures by promoting additional recrossing trajectories on the transition state dividing surface. We postulate that these motions are minimized by fine-tuning DHFR flexibility through optimization of the free energy surface of the reaction, such that a nearly static reaction-ready configuration with optimal electrostatic properties is maintained under physiological conditions
    corecore