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Abstract

Molecular dynamics (MD) simulations are a popular method of studying protein struc-

ture and function, but are unable to reliably sample all relevant conformational space in

reasonable computational timescales. A range of enhanced sampling methods are avail-

able that can improve conformational sampling, but these do not offer a complete solu-

tion. We present here a proof-of-principle method of combining MD simulation with

machine learning to explore protein conformational space. An autoencoder is used to

map snapshots from MD simulations onto a user-defined conformational landscape

defined by principal components analysis or specific structural features, and we show

that we can predict, with useful accuracy, conformations that are not present in the

training data. This method offers a new approach to the prediction of new low energy/

physically realistic structures of conformationally dynamic proteins and allows an alter-

native approach to enhanced sampling of MD simulations.
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1 | INTRODUCTION

Molecular dynamics (MD) simulations of proteins are a popular

method of studying aspects of protein function and dynamics.1 They

require input structure(s), which are preferably experimentally deter-

mined, usually by X-ray crystallography. However, as proteins are

often highly flexible, they adopt multiple conformations, which inter-

convert over a wide range of timescales,2,3 which can be predomi-

nantly longer than the feasible MD simulation length of ns-μs.

Enhanced sampling methods have been developed to improve the

sampling of MD simulations,4,5 but these do not offer a complete

solution to the MD sampling problem, partly because some knowl-

edge of the system is necessary to define the coordinates (eg, collec-

tive variables) along which sampling should be performed. Machine

learning offers an alternative approach.

Machine learning (ML) has been successfully applied to the analy-

sis of the high-dimensional data produced by MD simulations6 and in

structure prediction where an experimentally derived structure or

homology model is not available.7 Enhanced sampling techniques that

use ML to guide the MD simulations (eg, by identifying collective vari-

ables and imposing biasing potentials) have also been developed8-14; a

conceptually simpler and more flexible approach is to utilize ML for

the prediction of new protein conformations based on existing MD

simulations, as has been recently demonstrated. This approach has

recently been demonstrated using an autoencoder to encode the

structural data into a low-dimensional representation, either onto the

autoencoder's default latent vector15 or using the sketch-map algo-

rithm16 to improve the interpretability of the low-dimensional repre-

sentation.17,18 New structures were then predicted by decoding

points on the resulting low-dimensional surface.
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Here we employ a related but different approach, to use a simple,

pre-defined low-dimensional conformational landscape to guide the

search rather than use the machine learning algorithm define the low-

dimensional representation. The aim is not to create a more robust

machine learning algorithm than those discussed above, but to explore

whether a very simple representation of a MD-derived conformational

landscape can successfully be used to predict new, physically plausible

conformations. In principle, this approach could then be used with an

arbitrary representation of the conformational landscape, which can

consist of structural parameters of choice such as contact matrix,

backbone dihedrals (as used in ref 17,18) or a combination of specific

parameters. For this proof-of-concept study, an autoencoder was

trained to map the structures onto two simple conformational land-

scapes and trained to decode points within this landscape into new

structures. Two test cases are used, a short homoalanine peptide and

the calcium-binding protein calmodulin (CaM). Two conformational

landscapes descriptors were also used, the first two principal compo-

nents of a 2D-RMSD matrix and two dihedral angles that describe the

relative orientation of the two CaM globular domains. We show that

it is possible to predict physically plausible conformations which were

not sampled during the MD simulation(s).

2 | METHODS

2.1 | Molecular dynamics simulations

All simulations were performed in Gromacs 2016.419 using the Amber

FF14SB20 force field. Each system was solvated with a water box at

least 13 Å larger than the peptide/protein on each axis with counter-

ions (if required) generated in AmberTools 16.21 All calculations used

a periodic boundary condition and LINCS constraints on all bonds

involving hydrogen atoms, the Verlet cut-off scheme with 10 Å cut-

offs. Energy minimisation was followed by 100 ps of constant volume

(NVT ensemble) and 100 ps of constant pressure (NPT ensemble;

1 bar) solvent equilibration, using the Parrinello-Rahman pressure cou-

pling with a time constant of 2 ps, and positional restraints with a

force constant of 10 kJ mol−1 nm−2 applied to the protein/peptide.

Constant pressure was also used for the subsequent unrestrained pro-

duction run, and all simulations were run at 300 K.

2.2 | Conformational landscape

Our machine learning algorithm takes a conformational landscape in

the form of a series of vectors, as input. For initial development and

testing, a simple conformational landscape was defined based on the

2D-RMSD matrix, a square matrix of RMSD values for every structure

relative to every other structure (ie, each cell is the pairwise RMSD

between structures and the diagonal elements are therefore 0). For

m total structures, the 2D-RMSD matrix is an m × m matrix, and prin-

cipal components analysis the results in m eigenvectors, or principal

components (PCs). We then used the top two PCs (those with the

largest eigenvalues) to define a 2-dimensional conformational land-

scape, although the input is not limited to 2-dimensional vectors, so a

more complex, multidimensional landscape can be used by using addi-

tional PCs. For further validation of the method we used a conforma-

tional landscape defined by a pair of dihedrals, which describe the

relative conformations of each CaM globular domain.

2.3 | Machine learning

Our code and data for model 1 are available at https://github.com/

Imay-King/MDMachineLearning. The protein structures (Cartesian

coordinates) were first extracted from MD simulations using the

MDanalysis package.22,23 The structures were then aligned to the

starting structure by minimizing the RMSD for the same atom selec-

tion (model 1: all atoms; model 2: heavy backbone atoms) subse-

quently used for the ML, and the Cartesian coordinates were

normalized using MinMax scaling. For the complete set of protein

structures with coordinates x11,y
1
1,z

1
1

� �
… xmn ,y

m
n ,z

m
n

� �� �
, where n is the

number of atoms per structure and m is the total number of struc-

tures, the normalized coordinates for atom i in structure k are

given by:

xki 7!
xki −min xð Þ

max xð Þ−min xð Þ ð1Þ

Note that we also tried using z-score normalization, which is suitable

for Gaussian distributions, but this performed poorly (in terms of the

final predictions) as the 2D-RMSD matrix projected onto principal

components eigenvectors are not normally distributed.

Our modified autoencoder was built in Python 3.6 using Keras

(https://keras.io/), an open-source deep learning library with a Ten-

sorflow24,25 backend. The approach is illustrated in Figure 1. The

F IGURE 1 Modified autoencoder for prediction of protein
structure from a user-defined protein conformational landscape, in
this case defined by the first two principal components (PC1 and PC2)
of the 2D-RMSD matrix. The autoencoder is trained on two loss
functions, MSE1 for the loss between the latent vector and PC1/PC2)
andMSE2 for the loss between the target and predicted structures
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algorithm is trained using two mean square error (MSE) loss functions

simultaneously (with equal weighting). The first (MSE1) minimizes the

loss between the latent vector and the chosen conformational param-

eters (for the conformational landscape defined by PCA of the 2D

RMSD matrix this is the two first PCs), and the second (MSE2) mini-

mizes the loss between the target and predicted structures. Predicted

coordinates are then de-normalized using the inverse of the MinMax

method (Equation 1).

3 | RESULTS AND DISCUSSION

3.1 | Model 1

As a proof of concept, we first attempted to predict structures from a

100 ns MD simulation of the simple peptide L-Ala13, with snapshots

taken every 20 ps for a total of 5000 structures. This is a highly flexi-

ble peptide, with folding and unfolding of an α-helical structure

observed during the simulation. A maximum heavy-atom RMSD of

7.79 Å was observed between any two structures (ie, from the 2D-

RMSD matrix), and a maximum RMSD of 4.85 Å relative to the aver-

age structure (SI Figure S1). Since this is a relatively small system, we

included all non-hydrogen atoms in the ML (66 atoms, 198 features

per conformation). From an 80/20 training/testing split of the data,

using a 3-layer model we found that the best results were obtained

with a combination of the Adam optimizer26 and the ReLU activation

function27 for all layers except the last layer of the encoder and the

first layer of the decoder, for which the sigmoid activation function

was used instead. This gave a model that converged reasonably

quickly with very similar performance for the training and testing sets:

the loss (SI Figure S2) converged to 5.5 × 10−3 for the training set and

5.7 × 10−3 for the testing set. The average RMSD (± 1 SD) between

the predicted and target structure for the 1000 structures in the test-

ing set is 0.73 ± 0.41 Å.

To further test whether this approach can successfully predict

structures that are distinct from those in the training set, we repeated

the predictions for seven structures in different regions of the

PC1/PC2 plot (Figure 1), again using an 80/20 split, but each time

excluding any structures within ±0.002 along PC1 (34% of the vari-

ance) or ± 0.003 along PC2 (17% of the variance) from the training

set. The average RMSD observed for these predicted structures is

1.20 ± 0.31 Å, compared to 1.00 ± 0.49 Å without any exclusions.

The structural features of each conformation are predicted success-

fully (Figure 2) and this simple example therefore demonstrates the

feasibility of this approach to predict protein secondary and tertiary

structural elements from an MD simulation.

3.2 | Model 2

As a more biochemically relevant example we turned to CaM, which is

known to adopt several distinct conformational states.28,29 We chose

yeast CaM in a compact target peptide- and Ca2+-bound form (PDB

ID: 2LHI) and a less compact Ca2+-bound form (2LHH) as the starting

points for two MD simulations; these are both NMR structures, and

the first structure in the PDB file was used in each case. Both simula-

tions were carried out without Ca2+ or target peptide to encourage

significant conformational change during the simulation. Since this is a

much larger system than the L-Ala13 peptide, we only used the back-

bone atoms for ML and analysis (585 atoms, 1755 data points per

protein structure). We ran two 100 ns MD simulation from each

starting structure, with snapshots taken every 50 ps for a total of

4000 structures. As can be seen from the PCA and RMSD plots

(Figures 3 and SI Figure S3), the two simulations converged to

F IGURE 2 Structure
predictions of the L-Ala13
peptide. Top left: PC2 vs PC1 plot
from the 2D RMSD matrix (blue
circles), with points a-g (black
dots) used for testing. The black
cross at PC1 ≈ 0.018 belongs to
the initial, fully helical structure.
For each prediction, points within
(±0.002, ±0.003) of the (PC1,PC2)
value were excluded from the
training set. Overlays of the
original structure (green, red and
blue atoms) with the predicted
structure (light blue) are shown
for each point (a-g), with the
RMSD in Å shown below [Color
figure can be viewed at
wileyonlinelibrary.com]
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different conformations and the conformational space sampled in

each simulation does not overlap. Here, the 100 ns simulations do not

allow sufficient sampling of the CaM conformational landscape. The

maximum RMSD between any two structures across both simulations

(from the 2D-RMSD matrix) is 17.8 Å and the maximum RMSD rela-

tive to the average structure is 13.6 Å. Using the same 3-layer

autoencoder as for model 1, with an 80/20 training/testing split, the

loss converged to 3.44 × 10−3 for the training set and 3.39 × 10−3 for

the testing set, and for the 800 structures in the testing set the aver-

age RMSD between the predicted structure and the target was

0.90 ± 0.71 Å, which is similar to that observed for the L-Ala13 pep-

tide. We also tested the effect of different numbers of layers in the

autoencoder (SI Figure S4), with very similar results, although the loss

convergence was significantly less smooth with five layers.

As before, we then tested whether our algorithm can predict

structures that are distinct from those in the training set by repeat-

ing the prediction for seven structures in different regions of the

PCA plot (Figure 3(A)-(G)). For each of the predicted structures, the

training set consisted of the MD simulation from which that particu-

lar target structure did not originate; that is, when predicting struc-

tures taken from the MD1 simulation the model was trained only on

structures from MD2, and vice versa. We again experimented with

the effect of different numbers of layers in the autoencoder, and

found that overall the 3-layer model performed best (SI Figure S5).

For the seven predicted structures, the average RMSD relative to

the target structures is 1.89 ± 0.81 Å, and even for the worst predic-

tions (b and f) the overall gross structural features were successfully

predicted.

The target CaM structures in Figure 3 are compared with the

most similar structure from the training set in Table 1. The predicted

structures have conformations that are not found in the training set,

and in each case the RMSD to the target structure is smaller than the

minimum RMSD to the structures in the training set. The two struc-

tures with the biggest improvement (a and e) are shown in Figure 4.

Further, the seven target structures span a range of physiologically-

relevant ''open'' and ''closed'' conformational states that interconvert

via a relatively complex series of domain rotations and formation/

breaking of the central α-helix. It is perhaps then surprising that it is

possible to describe this conformational space in only two PCs of a

PCA analysis. For larger proteins this may not be sufficient, but our

method is extensible to an arbitrary number of PCs (the conforma-

tional landscape is read in as an array which is not limited to

F IGURE 3 Structure predictions of CaM. Top left: PC2 vs PC1 plot from the 2D RMSD matrix constructed from two MD simulations (blue
and red circles), with points a-g (black dots) used for testing. The black crosses belong to the starting structures for each simulation. For each
structure, testing only included the MD simulation that the structure was not taken from (MD2 for a-d, MD1 for e-g). Overlays of the original
structure (green) with the predicted structure (red) are shown for each point (a-g), with the RMSD in Å shown below [Color figure can be viewed
at wileyonlinelibrary.com]

TABLE 1 RMSD (in Å) between target structures and the most
similar structure from training set and predicted structure

Target
structure

Lowest RMSD from
training set

RMSD to predicted
structure

a 7.01 1.96

b 5.08 2.79

c 4.45 1.93

d 3.62 0.84

e 4.89 1.50

f 3.74 3.05

g 3.69 1.16
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2 dimensions) which would allow more complex conformational space

to be mapped in higher dimensions.

It is important to note that by necessity (so that target structures

can be defined for comparison), the PC space for each prediction ana-

lyzed so far (Figure 3 and Table 1) originated from the PCA of the 2D

RMSD matrix for the entire simulation (training + test data). This

means that some sampling information in the test data are retained in

the principal components of the training data. We will address this

point below. Firstly, we address the issue that model 2 does not

include the sidechains in the machine learning, because this is more

computationally efficient and also forces the PCA to describe gross

tertiary structure/conformational space without the added complica-

tion of multiple side chain conformations. In principle there are several

ways to use the predicted backbone structures for additional model-

ing: input geometries can be generated by building in the sidechains

using rotamer libraries,30-33 through partial structural alignments with

the original MD simulation data, or by using techniques such as ste-

ered MD34,35 to rapidly drive the MD simulation to new predicted

conformations. We chose to rebuild the sidechains of the predicted

CaM structures using the protein sidechain prediction algorithm in

SCWRL4.36 To benchmark this approach, we rebuilt the sidechains for

structures a-g in Figure 3, which resulted in an average RMSD

between the rebuilt and original structures of 2.99 ± 0.02 Å

(SI Table S1). However, since structures taken from an MD simulation

are typically high-energy structures with non-optimal sidechain-

sidechain interactions (at 300 K only a small minority of conforma-

tions sit at the bottom of the potential energy well) that SCWRL4 is

not designed to reproduce, we then energy minimized the sidechains

of both the original and rebuild structures using the FF14SB force

field in Amber using implicit solvation (5000 steps of steepest descent

with a harmonic constraint of 500 kcal mol−1 A−2 on the backbone

atoms). This decreased the average RMSD to 1.25 ± 0.80 Å,

suggesting that this approach is able to rebuild the sidechains and

generate structures that are physically realistic, with a strong corre-

spondence between the original and rebuilt structures.

From the NMR structure of apo CaM (PDB ID: 1LKJ) we can see

that the ensemble of structures covers more conformational space

than is sampled during MD1 and MD2 simulations, due to extensive

domain motion (SI Figure S6). However, the first two PCs of the 2D

RMSD matrix does not adequately capture this sampling

(SI Figure S7A), suggesting that in this case 2D RMSD captures more

intra-domain structural changes than domain motion. In order to pre-

dict new structures, we therefore chose to employ a different confor-

mational landscape defined by two dihedral angles, θ1 and θ2, which

F IGURE 4 Overlay of the predicted
(red) and target (green) structures a and e
from Figure 3, with the most similar
structure from the corresponding training
set (blue), and a range of structures from
the training set (the structrues in Table 1;
transparent blue) [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 5 Conformational sampling on the (θ1, θ2) landscape:
(A) structures from the combined MD1 and MD2 simulations (gray
circles), predicted structures after successful sidechain reconstruction
(black dots) and predicted structures with unsuccessful sidechain

reconstruction (black open circles). The red circle indicates the
structure chosen for additional MD simulations. (B) Conformational
sampling during MD1 and MD2 (gray circles) compared to the new
MD simulation (MD3, red circles) and the NMR ensemble (PDB 1LKJ,
black dots) [Color figure can be viewed at wileyonlinelibrary.com]
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describe the relative orientation of the two CaM globular domains

(SI Figure S7). We defined a regular grid of (θ1,θ2) values and mapped

this over the conformational space described by (θ1,θ2) for the com-

bined MD1 and MD2 simulations (SI Figure S8). The combined MD1

and MD2 simulation data were used for training using this new (θ1,θ2)

conformational landscape descriptor and the regular grid was used for

subsequent prediction. The (θ1,θ2) values of the predicted structures

were often observed to differ from their target values, so that the

majority of predicted structures subsequently lie near or within the

conformational space of MD1 and MD2 (Figure 5(A)). This suggests

that the autoencoder will not arbitrarily predict a structure in a region

of conformational space for which there is insufficient data for suc-

cessful extrapolation. There is, however, a large region of predicted

structures with distinct (θ1,θ2) values. Only some of these could be

successfully energy minimized after sidechain reconstruction using

SCWRL4, with others failing due to steric clashes. Clearly there is

room for improvement here, for example, using structural cost-

functions based on Cα-distances and dihedral angles as employed by

the EncoderMap algorithm,18 or possibly by performing the ML with

the entire protein (without sidechains removed). Nevertheless, using

this method we were able to identify a predicted structure, indicated

by a red circle in Figure 5(A), which is more similar to a structure from

the apo CaM NMR ensemble (PDB 1LKJ) than to any of the structures

from MD1 or MD2 (SI Figure S9). Starting from this predicted struc-

ture (with side chains reconstructed) as the input geometry, we ran an

additional 100 ns MD simulation, which results in a much greater cov-

erage of conformational space compared to the initial MD simulations

(Figure 5(C)).

4 | CONCLUSIONS

In summary, we have demonstrated a proof-of-principle method of

combining MD simulation with machine learning to explore a user-

defined, arbitrary conformational landscape. An autoencoder maps

snapshots from MD simulations onto the conformational landscape,

and we show that we can predict, with useful accuracy, conformations

that are not present in the training data. This method allows the pre-

diction of new physically realistic structures of conformationally

dynamic proteins that can be used for enhanced sampling of MD sim-

ulations, by rapidly generating new structures from which additional

MD simulations can be initiated for a more efficient search through

conformational space.
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