49 research outputs found

    Statistical matching for conservation science

    Get PDF
    The awareness of the need for robust impact evaluations in conservation is growing and statistical matching techniques are increasingly being used to assess the impacts of conservation interventions. Used appropriately matching approaches are powerful tools, but they also pose potential pitfalls. We outlined important considerations and best practice when using matching in conservation science. We identified 3 steps in a matching analysis. First, develop a clear theory of change to inform selection of treatment and controls and that accounts for real‐world complexities and potential spillover effects. Second, select the appropriate covariates and matching approach. Third, assess the quality of the matching by carrying out a series of checks. The second and third steps can be repeated and should be finalized before outcomes are explored. Future conservation impact evaluations could be improved by increased planning of evaluations alongside the intervention, better integration of qualitative methods, considering spillover effects at larger spatial scales, and more publication of preanalysis plans. Implementing these improvements will require more serious engagement of conservation scientists, practitioners, and funders to mainstream robust impact evaluations into conservation. We hope this article will improve the quality of evaluations and help direct future research to continue to improve the approaches on offer.Peer reviewe

    Assessing multidimensional sustainability : lessons from Brazil’s social protection programs

    Get PDF
    Examining linkages among multiple sustainable development outcomes is key for understanding sustainability transitions. Yet rigorous evidence on social and environmental outcomes of sustainable development policies remains scarce. We conduct a national-level analysis of Brazil’s flagship social protection program, Zero Hunger (ZH), which aims to reduce food insecurity and poverty. Using data from rural municipalities across Brazil and quasi-experimental causal inference techniques, we assess relationships between social protection investment and outcomes related to sustainable development goals (SDGs): "no poverty" (SDG 1), "zero hunger" (SDG 2), and "health and well being" (SDG 3). We also assess potential perverse outcomes arising from agricultural development impacting "climate action" (SDG 13) and "life on land" (SDG 15) via clearance of natural vegetation. Despite increasing daily per capita protein and kilocalorie production, summed ZH investment did not alleviate child malnutrition or infant mortality and negligibly influenced multidimensional poverty. Higher investment increased natural vegetation cover in some biomes but increased losses in the Cerrado and especially the Pampa. Effects varied substantially across subprograms. Conditional cash transfer (Bolsa Familia [BF]) was mainly associated with nonbeneficial impacts but increased protein production and improved educational participation in some states. The National Program to Strengthen Family Farming (PRONAF) was typically associated with increased food production (protein and calories), multidimensional poverty alleviation, and changes in natural vegetation. Our results inform policy development by highlighting successful elements of Brazil’s ZH program, variable outcomes across divergent food security dimensions, and synergies and trade-offs between sustainable development goals, including environmental protection

    Forest-linked livelihoods in a globalized world.

    Get PDF
    Forests have re-taken centre stage in global conversations about sustainability, climate and biodiversity. Here, we use a horizon scanning approach to identify five large-scale trends that are likely to have substantial medium- and long-term effects on forests and forest livelihoods: forest megadisturbances; changing rural demographics; the rise of the middle-class in low- and middle-income countries; increased availability, access and use of digital technologies; and large-scale infrastructure development. These trends represent human and environmental processes that are exceptionally large in geographical extent and magnitude, and difficult to reverse. They are creating new agricultural and urban frontiers, changing existing rural landscapes and practices, opening spaces for novel conservation priorities and facilitating an unprecedented development of monitoring and evaluation platforms that can be used by local communities, civil society organizations, governments and international donors. Understanding these larger-scale dynamics is key to support not only the critical role of forests in meeting livelihood aspirations locally, but also a range of other sustainability challenges more globally. We argue that a better understanding of these trends and the identification of levers for change requires that the research community not only continue to build on case studies that have dominated research efforts so far, but place a greater emphasis on causality and causal mechanisms, and generate a deeper understanding of how local, national and international geographical scales interact.This work was funded by the UK’s Department for International Development (grant number 203516-102) and governed by the University of Michigan’s Institutional Review Board (HUM00092191). JAO acknowledges the 520 support of a European Union FP7 Marie Curie international outgoing fellowship (FORCONEPAL). LVR was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant agreement No. 853222 FORESTDIET). AJB acknowledges the support of an Australian Research Council Australia Laureate Fellowship (grant number 525 FL160100072). LBF acknowledges support from the European Union Marie Curie global fellowship (CONRICONF). PM was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No 677140 MIDLAND)

    BIOFRAG: A new database for analysing BIOdiversity responses to forest FRAGmentation

    Get PDF
    Habitat fragmentation studies are producing inconsistent and complex results across which it is nearly impossible to synthesise. Consistent analytical techniques can be applied to primary datasets, if stored in a flexible database that allows simple data retrieval for subsequent analyses. Method: We developed a relational database linking data collected in the field to taxonomic nomenclature, spatial and temporal plot attributes and further environmental variables (e.g. information on biogeographic region. Typical field assessments include measures of biological variables (e.g. presence, abundance, ground cover) of one species or a set of species linked to a set of plots in fragments of a forested landscape. Conclusion: The database currently holds records of 5792 unique species sampled in 52 landscapes in six of eight biogeographic regions: mammals 173, birds 1101, herpetofauna 284, insects 2317, other arthropods: 48, plants 1804, snails 65. Most species are found in one or two landscapes, but some are found in four. Using the huge amount of primary data on biodiversity response to fragmentation becomes increasingly important as anthropogenic pressures from high population growth and land demands are increasing. This database can be queried to extract data for subsequent analyses of the biological response to forest fragmentation with new metrics that can integrate across the components of fragmented landscapes. Meta-analyses of findings based on consistent methods and metrics will be able to generalise over studies allowing inter-comparisons for unified answers. The database can thus help researchers in providing findings for analyses of trade-offs between land use benefits and impacts on biodiversity and to track performance of management for biodiversity conservation in human-modified landscapes.Fil: Pfeifer, Marion. Imperial College London; Reino UnidoFil: Lefebvre, Veronique. Imperial College London; Reino UnidoFil: Gardner, Toby A.. Stockholm Environment Institute; SueciaFil: Arroyo RodrĂ­guez, VĂ­ctor. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xicoFil: Baeten, Lander. University of Ghent; BĂ©lgicaFil: Banks Leite, Cristina. Imperial College London; Reino UnidoFil: Barlow, Jos. Lancaster University; Reino UnidoFil: Betts, Matthew G.. State University of Oregon; Estados UnidosFil: Brunet, Joerg. Swedish University of Agricultural Sciences; SueciaFil: Cerezo BlandĂłn, Alexis Mauricio. Universidad de Buenos Aires. Facultad de AgronomĂ­a. Departamento de MĂ©todos Cuantitativos y Sistemas de InformaciĂłn; ArgentinaFil: Cisneros, Laura M.. University of Connecticut; Estados UnidosFil: Collard, Stuart. Nature Conservation Society of South Australia; AustraliaFil: DÂŽCruze, Neil. The World Society for the Protection of Animals; Reino UnidoFil: Da Silva Motta, Catarina. MinistĂ©rio da CiĂȘncia, Tecnologia, InovaçÔes. Instituto Nacional de Pesquisas da AmazĂŽnia; BrasilFil: Duguay, Stephanie. Carleton University; CanadĂĄFil: Eggermont, Hilde. University of Ghent; BĂ©lgicaFil: Eigenbrod, FĂ©lix. University of Southampton; Reino UnidoFil: Hadley, Adam S.. State University of Oregon; Estados UnidosFil: Hanson, Thor R.. No especifĂ­ca;Fil: Hawes, Joseph E.. University of East Anglia; Reino UnidoFil: Heartsill Scalley, Tamara. United State Department of Agriculture. Forestry Service; Puerto RicoFil: Klingbeil, Brian T.. University of Connecticut; Estados UnidosFil: Kolb, Annette. Universitat Bremen; AlemaniaFil: Kormann, Urs. UniversitĂ€t Göttingen; AlemaniaFil: Kumar, Sunil. State University of Colorado - Fort Collins; Estados UnidosFil: Lachat, Thibault. Swiss Federal Institute for Forest; SuizaFil: Lakeman Fraser, Poppy. Imperial College London; Reino UnidoFil: Lantschner, MarĂ­a Victoria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca; Argentina. Instituto Nacional de TecnologĂ­a Agropecuaria. Centro Regional Patagonia Norte. EstaciĂłn Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Laurance, William F.. James Cook University; AustraliaFil: Leal, Inara R.. Universidade Federal de Pernambuco; BrasilFil: Lens, Luc. University of Ghent; BĂ©lgicaFil: Marsh, Charles J.. University of Leeds; Reino UnidoFil: Medina Rangel, Guido F.. Universidad Nacional de Colombia; ColombiaFil: Melles, Stephanie. University of Toronto; CanadĂĄFil: Mezger, Dirk. Field Museum of Natural History; Estados UnidosFil: Oldekop, Johan A.. University of Sheffield; Reino UnidoFil: Overal , Williams L.. Museu Paraense EmĂ­lio Goeldi. Departamento de Entomologia; BrasilFil: Owen, Charlotte. Imperial College London; Reino UnidoFil: Peres, Carlos A.. University of East Anglia; Reino UnidoFil: Phalan, Ben. University of Southampton; Reino UnidoFil: Pidgeon, Anna Michle. University of Wisconsin; Estados UnidosFil: Pilia, Oriana. Imperial College London; Reino UnidoFil: Possingham, Hugh P.. Imperial College London; Reino Unido. The University Of Queensland; AustraliaFil: Possingham, Max L.. No especifĂ­ca;Fil: Raheem, Dinarzarde C.. Royal Belgian Institute of Natural Sciences; BĂ©lgica. Natural History Museum; Reino UnidoFil: Ribeiro, Danilo B.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Ribeiro Neto, Jose D.. Universidade Federal de Pernambuco; BrasilFil: Robinson, Douglas W.. State University of Oregon; Estados UnidosFil: Robinson, Richard. Manjimup Research Centre; AustraliaFil: Rytwinski, Trina. Carleton University; CanadĂĄFil: Scherber, Christoph. UniversitĂ€t Göttingen; AlemaniaFil: Slade, Eleanor M.. University of Oxford; Reino UnidoFil: Somarriba, Eduardo. Centro AgronĂłmico Tropical de InvestigaciĂłn y Enseñanza; Costa RicaFil: Stouffer, Philip C.. State University of Louisiana; Estados UnidosFil: Struebig, Matthew J.. University of Kent; Reino UnidoFil: Tylianakis, Jason M.. University College London; Estados Unidos. Imperial College London; Reino UnidoFil: Teja, Tscharntke. UniversitĂ€t Göttingen; AlemaniaFil: Tyre, Andrew J.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Urbina Cardona, Jose N.. Pontificia Universidad Javeriana; ColombiaFil: Vasconcelos, Heraldo L.. Universidade Federal de Uberlandia; BrasilFil: Wearn, Oliver. Imperial College London; Reino Unido. The Zoological Society of London; Reino UnidoFil: Wells, Konstans. University of Adelaide; AustraliaFil: Willig, Michael R.. University of Connecticut; Estados UnidosFil: Wood, Eric. University of Wisconsin; Estados UnidosFil: Young, Richard P.. Durrell Wildlife Conservation Trust; Reino UnidoFil: Bradley, Andrew V.. Imperial College London; Reino UnidoFil: Ewers, Robert M.. Imperial College London; Reino Unid

    BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation

    Get PDF
    Peer reviewe
    corecore