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Abstract  

 

Examining linkages among multiple sustainable development outcomes is key for understanding 25 

sustainability transitions. Yet rigorous evidence on multiple social and environmental outcomes of 

sustainable development policies remains scarce. We conduct a national-level analysis of Brazil’s 

flagship social protection program, Zero Hunger, which aims to alleviate food insecurity and poverty. 

Using data from rural municipalities across Brazil and quasi-experimental causal inference techniques, 

to control for non-random treatment allocation, we assess relationships between investment and 30 

outcomes related to inter-linked sustainable development goals (SDGs): ‘no poverty’ (SDG 1), ‘zero 

hunger’ (SDG 2) and ‘health and well-being’ (SDG 3). We also assess potential perverse outcomes 

arising from agricultural development adversely impacting ‘climate action’ (SDG 13) and ‘life on land’ 

(SDG 15) via clearance of natural vegetation. Despite increasing daily per capita protein and kilocalorie 

production, summed ZH investment did not alleviate child malnutrition or infant mortality, and 35 

negligibly influenced multi-dimensional poverty. Effects on natural vegetation loss varied; higher 

investment increased cover in some biomes but increased losses in the Cerrado and especially the 

Pampa. Effects varied substantially across sub-programs. Conditional cash-transfer (Bolsa Familia) was 

mainly associated with non-beneficial impacts, but increased protein production and improved 

educational participation in some states. The agricultural-supportive PRONAF was typically associated 40 

with increased food production (protein and calories), multi-dimensional poverty alleviation and 

changes in natural vegetation. Our results inform policy development by highlighting successful 

elements of Brazil’s Zero Hunger program, variable outcomes across divergent food security 

dimensions, and synergies and trade-offs between multiple sustainable development goals, including 

environmental protection. 45 

Key words: Rural development, environmental impact, food security, Impact estimation, Land use 

change 

 

Significance statement 

Meeting sustainable development goals (SDGs) requires assessing trade-offs and synergies across 50 

divergent goals and robust policy impact evaluation. Using quasi-experimental inference methods, we 

assess impacts of Brazil’s Zero Hunger (ZH) social protection programs. ZH investment increased per 

capita calorie and protein production. Social impacts (multi-dimensional poverty, child malnutrition 

and infant mortality) were more limited and the direction of change in natural vegetation cover was 

biome specific. Conditional cash transfer (Bolsa Familia) generated fewer benefits and more trade-offs 55 

than agricultural support (PRONAF). Results inform policy development, including roll out of ZH 
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inspired programs in sub-Saharan Africa. We highlight successful elements of social protection 

programs, and synergies and trade-offs between multiple SDGs including environmental protection. 

 

60 
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Introduction. Sustainability is an elusive societal goal requiring transitions across multiple dimensions 

- including food security, poverty alleviation, health and environmental protection (1). These major 

global challenges are interrelated (2), and are reflected in national and international development 

agendas, including the Sustainable Development Goals (SDGs) (3).  

 Food insecurity (SDG 2) remains an intractable global problem (4). Addressing it requires 65 

meeting multiple objectives simultaneously: enough healthy and nutritionally diverse food needs to be 

produced and available at all times to a population with physical and economic access to it (5). Food 

security is directly linked to poverty alleviation (SDG 1), and health and well-being (SDG 3) (6). 

However, agricultural production is also a key driver of natural vegetation and biodiversity loss 

(conflicting with SDG 15), and greenhouse gas emissions (conflicting with SDG 13) (7, 8).  70 

Understanding synergies and trade-offs among multiple sustainability objectives, and how they 

are influenced by policy interventions has been a key focus of scholarly and policy discussions around 

the globe (9). Despite recent methodological advances in causal impact estimation empirical research 

which quantifies synergies and trade-offs among diverse social and environmental outcomes from 

poverty alleviation programs is still extremely rare (10). There is a marked and urgent need for such 75 

studies to ensure that the impacts of development programs across the range of intended and unintended 

sustainable development outcomes are quantified and considered when formulating policy. We address 

this gap by assessing how Brazil’s flagship Zero Hunger (ZH) social protection programs have affected 

food production, multi-dimensional poverty, child malnutrition and infant mortality, and changes in 

natural vegetation cover. National development strategies frequently implement social protection 80 

programs to support livelihoods, alleviate income or food poverty, and manage vulnerability to shocks 

(11). Programs are often designed and evaluated as single instruments. A crucial part of any program 

evaluation is assessing whether program objectives are met, but programs rarely asses secondary 

outcomes that are not core objectives (12). This restricted focus increases the risk that trade-offs and 

perverse outcomes remain undetected, potentially generating incomplete conclusions on program 85 

effectiveness (13).  

In our assessment of ZH’s social protection programs, we leverage a suite of high spatial 

resolution datasets, and use a quasi-experimental approach that combines covariate balancing weights 

with multiple regression analyses to help control for potential non-random program implementation. 

Our analysis provides novel insights on how to achieve multiple sustainability outcomes, and is directly 90 

relevant to the design and implementation of social protection mechanisms in other regions of the world, 

particularly sub-Saharan Africa, where several programs are partly based on ZH (14). 

 

Brazil’s Zero Hunger Program. The ZH program aimed to lift 44 million poor Brazilians out of 

poverty and food insecurity and was fully implemented in 2004 (15). Four sub-programs formed the 95 

core of ZH, and at its inception received ~90% of ZH’s total budget (15). ZH has since evolved into 

other initiatives (Brasil Sem Miseria, i.e. Brazil without extreme poverty) that continue to operate these 
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four sub-programs with national government funding allocated to state or municipal governments, and 

in some instances directly to program beneficiaries. Small-scale family farmers are the programs’ 

primary target beneficiaries, due to their key role in rural development and national food security (16, 100 

17). They are provided with i) low interest agricultural credits through The National Program to 

Strengthen Family Farming (PRONAF) and, ii) access to price-controlled markets through The Food 

Acquisition Program (PAA). The markets created through PAA are operated by state-linked institutions 

that buy produce directly from local farmers to supply social assistance programs, government funded 

schools and local markets (15). A key social assistance program is iii) The National School Feeding 105 

Program (PNAE) which provides free school meals to all children  and promotes the use of produce 

from family farms (15). Finally, families in poverty, many of which are small-scale farmers, qualify for 

monthly cash transfers through iv) The Bolsa Familia (BF) sub-program, conditional on child school 

attendance and participation in family health checks and vaccination programs (although families 

without children can also get support) (15). ZH and core sub-programs predate the SDGs, and do not 110 

combine objectives focused on protecting the natural environment or climate change mitigation with its 

objectives concerning food production and poverty. Nevertheless, these programs form an integrated 

large-scale initiative with the potential to influence both social and environmental dimensions captured 

in the SDGs framework, including rural livelihoods and food security, health outcomes, agricultural 

production, and land-use change. Assessing ZH and its contribution to multiple outcomes – both 115 

intended (food security, poverty and health) and unintended (environmental) – is thus vital to get a full 

understanding of its contribution to transitions towards sustainability (10). 

ZH programs have been associated with increased farm incomes and productivity (18–20), 

increases in agrobiodiversity (21), increased food purchases in food insecure households (22), reduced 

child malnutrition (23, 24), and lower infant mortality (25, 26). Yet, contrasting evidence suggests that 120 

ZH programs have had negligible effects on agricultural production, farmer livelihoods, child 

malnutrition and long-term food security (27–30), and have failed to reach the poorest and most 

vulnerable families (31–33). However, the majority of ZH impact studies assess impacts on individual 

treated and untreated households. They thus focus exclusively on micro-scale pathways that generate 

benefits, ignoring the larger scale indirect pathways through which benefits can accrue (e.g. impacts of 125 

market stimulation on untreated households (34)). Assessing aggregate impacts over larger geographic 

scales enables us to: first - capture potential impacts arising from investment in ZH at the cost of reduced 

investment in other initiatives (e.g. basic infrastructure (35)); and second - account for impacts of 

expansion of agricultural activities beyond the boundaries of household land parcels. Previous studies 

are also limited by a failure to consider spatial heterogeneities, and/or key confounding factors, and 130 

have focused on a narrow range of outcomes that prevent full exploration of synergies and trade-offs 

across multiple sustainable development objectives. 
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Analytical approach. We assess ZH effects on food production, multi-dimensional poverty, health and 

changes in natural vegetation cover using a quasi-experimental approach and municipal level publicly 135 

available data from national and global sources (see Materials and Methods). We created a high-spatial 

resolution longitudinal dataset for rural municipalities across Brazil (n = 3786-4976, i.e. 74-97% of all 

rural municipalities – sample sizes were outcome and program component dependent). We focus on 

rural areas because this is where family farmers (one of ZH’s primary beneficiaries) are overwhelmingly 

concentrated, and because impacts are likely to be heterogeneous across urban and rural areas. We first 140 

analyse the impact of summed financial investment across ZH’s main sub-programs (PRONAF, PAA, 

PNAE and BF), and then separately assess the impacts of the two largest sub-programs, BF and 

PRONAF, which captured respectively 46% and 42% of ZH’s summed investment between 2004 and 

2013. These sub-programs are examples of the types of social protection programs that are frequently 

implemented elsewhere: conditional cash transfer to protect minimum subsistence (BF), and credit 145 

provision to support household investment and livelihood diversification (PRONAF) (11).  

We assess impact on changes in multi-dimensional poverty (SDG 1), food production (daily 

per capita Kcalorie and protein production; SDG 2), child malnutrition (proportion of underweight 

infants and children age 12-24 months; SDGs 2 & 3), infant mortality (children <1 year; (SDGs 2 & 3) 

and area (km2) under natural vegetation cover (SDGs 13 & 15). For all outcomes we measure change 150 

from 2004 (the first complete year of ZH implementation) to 2013 (at the time of analysis the most 

recent year with information across all predictor variables). We use two separate datasets for multi-

dimensional poverty and infant mortality that represent i) the poorest sub-sample of each municipality’s 

population using data from the national primary information system (SIAB) (change assessed 2004-

2013) (36), and ii) the entire municipal population using the national demographic census (due to census 155 

dates assessing change from 2000 to 2010). 

We combine covariate balancing generalized propensity score weights (CBGPS method (37)) 

with multiple regression analyses to assess links between investment and changes in outcomes. This 

helps limit potential non-random treatment allocation bias by reducing the correlation between 

treatment and potential confounding factors (37) (Materials and Methods and “SI Appendix; CBGPS”). 160 

We model outcomes in the final year of the evaluation period as a function of summed per capita 

investment in ZH (R$). We account for inflation (IGP-DI index, base year 2013), and control for 15 

key biophysical and socio-economic factors and baseline conditions, including variables that affect the 

implementation of ZH and its sub-programs (Materials and Methods and “SI Appendix; Confounding 

variables; Table S1 and Table S2”).  165 

Our statistical regression models include interactions between investment, and state or biome 

to account for potential spatial variation in program implementation, and differential outcomes in 

divergent environments. We use our regression models to predict changes in outcomes resulting from 

three different investment scenarios: negligible investment (defined as the 1st percentile of investment 

values to avoid using zero values that would predict beyond the data range), actual investment, and a 170 
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spatially uniform investment (defined as the median investment value). We map predicted percentage 

change in outcomes per municipality (arising from actual and spatially uniform investment) relative to 

a negligible investment scenario to visualize impacts across Brazil. We conduct several robustness tests 

to assess if our inferences still apply when excluding lower quality data - defined as municipalities with: 

i) extremely large areas (>10,000 km2) that are likely to have less representative socio-economic data 175 

(38), ii) SIAB data that do not meet quality criteria defined by the Ministry of Health (39), or iii) natural 

vegetation data that cover less than 95% of the municipality’s area due to cloud cover in 2004 or 2013. 

Controlling for data quality in our natural vegetation robustness models leads to the exclusion of 77% 

and 99.7% of the Amazon and Pantanal biomes’ area. We therefore exclude these biomes from our 

robustness tests. We focus on results from models that use all data when these are qualitatively similar 180 

to those from models that exclude lower quality data, and in the few cases where discrepancies arise 

focus on results from the latter. We also check, and confirm, that our results are not unduly influenced 

by spatial autocorrelation or endogeneity (Materials and Methods and “SI Appendix; Robustness 

tests”). 

 185 

Results. We find considerable heterogeneity in the effects of ZH investment. This variation arises for 

three primary reasons. First, impacts are outcome specific with evidence of positive, negligible and 

negative effects. Second, within a single outcome, impacts depended on whether investment is delivered 

via conditional cash transfers (BF) or agricultural credits (PRONAF). Finally, within a single outcome 

variable and investment mechanism, there is often considerable spatial variation in the magnitude and 190 

direction of effects (Fig. 1). This is often not simply due to spatial variation in investment levels (Fig. 

S1), as marked spatial variation in outcomes frequently remains when modelling outcomes using a 

spatially uniform investment level (Fig. S2).  

 

Food production. Summed investment across ZH sub-programs increased protein production across 195 

Brazil, while investment increased Kcalorie production in three states (Rondonia in the north, Sergipe 

in the north-east, and Sao Paulo in the south-east) and reduced in two (Acre in the north and Paraiba in 

the north-east) (Table 1; Fig. 1). Substantial spatial variation in outcomes is partially driven by differing 

investment levels (Fig. S1), as regional variation is reduced when keeping investment levels spatially 

uniform (Fig. 1 and Fig. S2), as well as trade-offs between Kcalorie and protein production arising 200 

primarily from BF investment. 

Across most of Brazil, PRONAF investment was associated with increased protein (mean 

predicted change per municipality = 41.0%, S.E. = 0.9 compared to the negligible investment scenario; 

mean increase = 597.0 grams per capita per day, S.E. = 25.7) and Kcalorie production (mean predicted 

change per municipality = 32.8%, S.E. = 0.9; mean increase = 37,668 Kcalories per capita per day, S.E. 205 

= 2,601). Although when excluding lower quality data investment only generated a significant increase 

in Kcalorie production in three states (Rondonia in the north, Bahia in the north-east and Sao Paulo in 
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the south-east) and investment significantly reduced production in four states (Acre and Para in the 

north, Paraiaba in the north-east and Espirito Santo in the south-east). While percentage increases in 

production are more marked in southern Brazil (Fig. 1), this is linked to higher investment levels in this 210 

region (Fig. S1): using spatially uniform investments levels PRONAF increases protein and Kcalorie 

production in the north-east at a similar rate to the south, albeit from a lower base (Fig. S2). This is 

notable as the north-east region has difficult climatic (hot and dry) and socio-economic conditions, and 

low productivity of family farms (40, 41). While family farmers in southern Brazil have participated 

more actively in larger national and international markets (42), e.g. for soybean, rice and beef (43), 215 

family farmers in the north-east are generally poorer (42) but contribute greatly to local and national 

production of staple foods such as rice, maize and cassava (40). Diverting some PRONAF funds from 

the south to the north-east could thus deliver cost-effective national improvements in local food 

production targeted at regions with the greatest need, and address a key critique that PRONAF favours 

wealthier farmers producing commodity products in the south (32). 220 

BF also increased protein production (mean predicted change per municipality = 168.1%, S.E. 

= 8.8 per municipality; mean increase = 282.9 grams per capita per day, S.E. = 20.0). Rates of increase 

appear to be greater in north-eastern states (e.g. Alagoas), where baseline production was low (Fig. 1) 

and food insecurity has been historically high (16). BF impacts probably arise because conditional cash 

transfer increase incomes in poor agricultural households by up to 46% (44). These can either facilitate 225 

investment in agricultural production (as observed for cash-transfer programs in Mexico (45)) or 

stimulate food markets and increase local production due to increased purchasing power.  

Despite positive BF effects on protein production, we find no overall effect of BF on Kcalorie 

production. We find, however, four states with BF-linked reductions in Kcalorie production (Amapa in 

the north, Bahia and Rio Grande do Norte in the north-east and Goias in the centre-west), and two states 230 

with BF-linked Kcalorie increases (Acre in the north and Rio Grande do Sul in the south; Fig 1). These 

spatial patterns persist when modelling impacts using spatially uniform investments (Fig. S2). One 

reason why BF investment may not have increased Kcalorie production may be that some farmers have 

used BF investment to switch from production of staple crops to protein production. To explore this 

potential mechanism we assess rice and cassava production (which are the main high Kcalorie crops), 235 

and milk and poultry production (which are the main high-protein products generated by Brazilian small 

scale farmers and used for local human consumption (16, 46).  We find that total rice and cassava 

production have declined by 45% in the north-east, 65% in the centre-west, and 30% in the south-east. 

We also find that total milk and poultry production increased in the north-east (milk = 26%; poultry = 

14%), centre-west (milk = 19%; poultry = 17%) and south-east (milk = 15%; poultry = 38%). Use of 240 

cash transfers to purchase rather than produce food is another potential mechanism for the declines in 

crop production (29, 30), especially when falling food prices (due to increases in agricultural 

productivity, primarily by large-scale agro-businesses) increase purchasing power of money received 

through cash transfers especially for low income populations (47), while simultaneously reducing the 
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profitability of small scale production of staple crops. Regardless of the mechanism, BF does not seem 245 

to increase local production of stable crops, and at worse it may reduce it, which could reduce food 

security resilience to any future price shocks (2).  

 

Multi-dimensional poverty index (MPI). We analyse two multi-dimensional poverty measures 

capturing information on living standards, health, and education. Our first measure uses data from the 250 

poorest sub-sample of the population (SIAB), while the second captures the municipality’s entire 

population (census). SIAB derived multi-dimensional poverty is not associated with summed ZH 

investment across sub-programs, and effects of PRONAF investment are also negligible (Fig. 1, Table 

S3). BF investment is associated with increased SIAB derived multi-dimensional poverty (Table 1; 

mean predicted change per municipality = 80.7%, S.E. = 0.5; mean increase = 0.026 MPI, S.E. = 255 

0.0003), however, when lower quality data are excluded a significant increase in SIAB derived multi-

dimensional poverty only remains in two states (Mato Grosso and Sao Paulo).  

It is clear that BF has had limited capacity to alleviate multi-dimensional poverty and in some 

regions is associated with increased poverty – these findings are counter to expectations (25, 48), but 

our robustness tests strongly suggest that they do not arise due to hidden bias generated by unmeasured 260 

confounding factors (“SI Appendix; Robustness tests”). Indeed, previous studies suggest that until 

2010, BF support did not reach 1.2 million eligible families, and those that did receive support obtained 

insufficient funds to lift them out of poverty (44). Moreover, our results are compatible with a sub-

national case study showing that BF was associated with increased child malnutrition, which is part of 

our SIAB derived multi-dimensional poverty measure (27). Notably, BF support is conditional on child 265 

school attendance, and we do find that BF investment is associated with improvements in the 

educational dimension of our SIAB derived multi-dimensional poverty measure in two states (Parana 

and Santa Catarina: Table S4). These positive impacts, whilst more limited, match those of previous 

research (49), and suggests that conditional cash transfers dependent on participation in education can 

support the educational targets of SDG 4.  270 

There is little evidence that summed investment across ZH sub-programs is associated with 

notable improvements in our census derived multi-dimensional poverty metric. Whilst, when lower 

quality data are excluded ZH investment is significantly associated with a multi-dimensional poverty 

reduction, the overall effect is very small (mean predicted change = 1.9%, S.E. = 0.2 per municipality; 

mean reduction = 0.002 MPI, S.E. = 0.0001). When all data are included in the models there is an 275 

approximate balance in the number of states with investment associated reductions in multi-dimensional 

poverty (5 states: Acre and Amazonas in the north, Ceara and Rio Grande do Norte in the north-east, 

and Rio de Janeiro in the south-east) and poverty increases (4 states: Para in the north, Bahia in the 

north-east, and Minas Gerais and Sao Paulo in south-east; Fig. 1). 

BF investment is generally associated with increases in census derived multi-dimensional 280 

poverty (mean predicted change = 34.7%, S.E. = 0.9 per municipality; mean increase = 0.013 MPI, S.E. 
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= 0.0002 per municipality) and only one state exhibiting significant poverty alleviation in response to 

BF investment in both the core and robust model (Fig 1 and “SI Appendix; Robustness tests”).  BF 

investment, however, is linked to significant improvements in the educational dimension of our census 

derived multi-dimensional poverty measure in some states (Para and Rondonia in the north, and Alagoas 285 

and Bahia in the north-east: Table S4).  

Our results suggest that the effectiveness of BF on multi-dimensional aspects of poverty, other 

than educational benefits in some states, are constrained across much of Brazil. There are numerous 

possible mechanisms for this. First, supply-side constraints may play a role, especially insufficient 

access to health services (50), and a lack of monitoring of the health and nutritional status of beneficiary 290 

families (e.g. between 2005 and 2012, 3.2 million BF households remained unmonitored (51)). Notably 

these constraints have been reported to be less marked in north-eastern Brazil (52), which is where we 

find some evidence that BF alleviates (census derived) multi-dimensional poverty. Second, the 

increased taxation that is required to fund BF is disproportionately allocated to the poorer sectors of 

society, thus increasing fiscal poverty amongst some BF participants (53) that reduces their capacity to 295 

purchase assets that contribute to our measure of multi-dimensional poverty. Finally, insufficient access 

to labour markets or longer-term financial security, e.g. through pensions, may also limit BF’s ability 

to reduce multi-dimensional poverty (44).  

In contrast to BF, we find that PRONAF investment was associated with an overall reduction 

in our census derived multi-dimensional poverty measure (Table 1; mean predicted change per 300 

municipality = 9.7%, S.E. = 0.2; mean reduction = 0.006 MPI, S.E. = 0.0001). The largest reductions, 

measured in terms of percentage change, occur in southern Brazil (22.2%, S.E. = 0.3) (Fig. 1). This is 

not due to higher investment as this spatial pattern remains under a uniform investment scenario (Fig. 

S2), and is probably influenced by the lower census derived multi-dimensional poverty baselines in this 

region (Fig. 1), which increase rates of change expressed as percentages. 305 

PRONAF funds must be invested in agricultural production. This investment could lead to 

increases in farm employment opportunities, or stimulate labour markets associated with the production 

and sale of agricultural materials and equipment. Wealthier and more competitive farmers tend to be 

better placed than poorer farmers to benefit from any stimulation of labour markets (54), which might 

help explain the observed contrasting effects between PRONAF associated improvements in census 310 

derived multi-dimensional poverty, and the negligible effects in the SIAB derived multi-dimensional 

poverty measure.  

 

Infant mortality and child malnutrition. The only detected effect of ZH investment on infant mortality 

is that BF investment is associated with increased SIAB derived infant mortality (mean predicted 315 

change = 59.4%, S.E. = 0.4 per municipality; mean increase = 725.4 deaths per 100,000 live births, S.E. 

= 5.9 per municipality; Table 1). These effects were not detectable, however, when we exclude lower 

quality data (Table S3). Increased child malnutrition, for which data are only available from the poorest 
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sub-sample (SIAB), is also associated with social security (BF) investment (mean predicted change = 

67.7%, S.E. = 0.4 per municipality; mean increase = 103.4 underweight children per 10,000 weighed 320 

children, S.E. = 1.2 per municipality; Table 1).  

In combination our results provide strong evidence that investment in ZH programs is not 

alleviating SIAB derived child malnutrition, or census or SIAB derived infant mortality. Our findings 

extend earlier work conducted at local scales (27, 29, 50) to the national scale, though studies with 

beneficial associations between BF and child health also exist (25, 26). The lack of improvements in 325 

response to BF investment are compatible with, and may partly be driven by, higher multi-dimensional 

poverty levels and reduced per capita calorie production from staple crops, which we also find are 

associated with higher BF investment. Lack of improvements from BF investment may also be linked 

to insufficient monitoring and resultant intervention of the health and nutritional status of beneficiary 

families (see above), perhaps due to diversion of funding away from municipal institutions in charge of 330 

monitoring (55) or investments in basic infrastructure (e.g. education, health centres and public 

sanitation systems) (35, 56). Such infrastructure is still insufficient in many rural areas (57) and 

particularly amongst BF recipients (58), but is important for BF and conditional cash transfers to be 

effective (59). Similarly, the lack of beneficial impacts on child malnutrition and infant mortality arising 

from PRONAF investment occur despite PRONAF delivering substantial improvements in per capita 335 

food production.  

This is unlikely a result of food unavailability due to export away from local markets since the 

share of family farm produce exported abroad is minimal (0.04% of temporary crops and 0.07% of 

permanent crops in 2006 (60)) and again probably arises due to poor access to health services and basic 

infrastructure for this sector of society, and perhaps limited participation in PRONAF amongst poorer 340 

and more vulnerable farmers (32).  

 

Natural vegetation cover. Summed investment across ZH sub-programs is associated with increased 

natural vegetation cover in the Amazon (per municipality mean predicted change = 0.9%, S.E. = 0.01; 

mean predicted increase = 53.9 km2, S.E. = 5.0; summed predicted increase = 24,434 km2 across 454 345 

municipalities), Atlantic forest (per municipality mean predicted change = 2.4%, S.E. = 0.02; mean 

predicted increase = 2.5 km2, S.E. = 0.1; summed predicted increase = 5,826 km2 across 2,337 

municipalities) and Caatinga (per municipality mean predicted change =  0.6%, S.E. = 0.003; mean 

predicted increase = 2.9 km2, S.E. = 0.1; summed predicted increase = 2,210 km2 across 772 

municipalities, Caatinga predictions are from the model excluding lower quality data due to a change 350 

in the direction of effect compared to a model that uses all data irrespective of quality (Table 1; Table 

S3; Fig. 1). In contrast, summed ZH investment is associated with natural vegetation loss in the Cerrado 

(per municipality mean predicted change = 2.8%, S.E. = 0.04; mean loss = 30.9 km2, S.E. = 1.6; summed 

predicted loss = 30,844 km2 across 1,020 municipalities) and Pampa (per municipality mean predicted 
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change = 19.9%, S.E. = 0.8; mean loss = 122.6 km2, S.E. = 13.9; summed predicted loss = 11,155 km2 355 

across 92 municipalities).  

The direction of the effect of PRONAF investment on natural vegetation cover was the same 

as impacts of summed investment (ZH) in all biomes except in the Amazon where PRONAF investment 

was associated with deforestation (mean predicted change = 1.6%, S.E. = 0.03 per municipality; mean 

decrease = 96.3 km2, S.E. = 9.6 per municipality; summed predicted decrease = 42,863 km2 across 454 360 

municipalities). PRONAF investment was associated with natural vegetation gains in the Atlantic forest 

(per municipality mean predicted change = 9.7%, S.E. = 0.1; mean increase = 9.7 km2, S.E. = 0.3; 

summed predicted increase = 22,316 km2 across 2,337 municipalities) and Caatinga (per municipality 

mean predicted change = 1.2%, S.E. = 0.01; mean increase = 5.5 km2, S.E. = 0.2; summed predicted 

increase = 5,594 km2 across 1,015 municipalities).  In contrast, PRONAF investment was associated 365 

with natural vegetation losses in the Cerrado (per municipality mean predicted change = 3.0%, S.E. = 

0.03; mean loss = 30.8 km2, S.E. = 1.6; summed predicted loss = 31,030 km2 across 1,020 

municipalities) and Pampa (per municipality mean predicted change = 23.9, S.E. = 0.6; mean loss = 

158.5 km2, S.E. = 17.3; summed predicted loss = 14,427 km2 across 92 municipalities). When the model 

excludes lower quality data (which means also excluding all of the Amazon and Pantanal biome) 370 

PRONAF loses its overall significant effect. The effect of investment in the Caatinga and Cerrado also 

become non-significant and is reduced to less than a one percent average predicted change, however, 

the significant gains of natural vegetation in the Atlantic Forest remains. 

 BF is associated with natural vegetation loss in four biomes: the Amazon (per municipality 

mean predicted change = 2.5%, S.E. = 0.02; mean loss = 181.9 km2, S.E. = 18.3; summed predicted 375 

loss = 82,597 km2 across 454 municipalities), the Cerrado (per municipality mean predicted change = 

3.9%, S.E. = 0.04; mean loss = 45.0 km2, S.E. = 2.3; summed predicted loss = 45,851 km2 across 1,020 

municipalities), Atlantic forest (per municipality mean predicted change = 0.9%, S.E. = 0.01; mean 

predicted loss = 1.2 km2, S.E. = 0.04; summed predicted loss = 2,660 km2 across 2,337 municipalities) 

and Pampa (per municipality mean predicted change = 42.3%, S.E. = 0.6; mean loss = 377.2 km2, S.E. 380 

= 41.2; summed predicted loss = 34,704 km2 across 92 municipalities). In contrast, BF investment is 

associated with increased natural vegetation in the Caatinga (per municipality mean predicted change 

= 0.5%, S.E. = 0.001; mean predicted increase = 2.3 km2, S.E. = 0.1; summed predicted increase = 

1,743 km2 across 772 municipalities, Caatinga predictions are from the model excluding lower quality 

data due to a change in the direction of effect compared to a model that uses all data irrespective of 385 

quality Table 1; Table S3; Fig. 1). Consequently, the contrast between negative impacts of PRONAF 

and BF on natural vegetation in the Amazon and apparent positive impacts of summed ZH investment 

suggest that the more minor ZH sub-programs (i.e. PNAE and PAA) may drive positive forest 

transitions in the Amazon.  

Our analyses focus on total change rather than fine scale spatial dynamics of loss and gain but 390 

clearly indicate that social protection programs can have divergent, and biome specific impacts on 
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natural vegetation in biomes that support a number of endemic and globally threatened species. The 

Cerrado and Pampa biomes consistently lost natural vegetation as investment in summed ZH, PRONAF 

and BF increased, with proportional losses being particularly large in the Pampa. This conflicts with 

goals to maintain biodiversity (SDG 15, life on land). In other cases, investment was associated with 395 

increased natural vegetation cover, most notably PRONAF investment was associated with increased 

Atlantic Forest vegetation – this and other changes in woody vegetation cover will influence carbon 

storage and sequestration (61) and thus action to tackle climate change (SDG 13). Investment in the 

heavily degraded and fragmented Atlantic Forest might have promoted agricultural intensification, 

limiting agricultural expansion and enabling vegetation regrowth on more marginal lands. Investments 400 

in the Pampa and Cerrado, however, could have promoted agricultural expansion. Indeed, spatially 

explicit analyses across Brazil suggest that positive forest transitions in the Atlantic Forest are 

associated with agricultural intensification, whilst agricultural expansion has led to forest loss in the 

Cerrado (62). The greatest ZH associated losses of natural vegetation occur in the Pampa in which the 

flat terrain could have facilitated expansion of arable systems (soy and sugar-cane) outside the flood-405 

plain, as this is more profitable than the low-density livestock system that dominate the region (63), and 

driven the loss of natural grassland  – although expansion of livestock has also contributed to these 

losses (64). The expansion of arable crops is likely to be driven by demand from international 

commodity markets, which tend to drive land conversion as a result of improvements in production and 

profitability (2). Such agricultural expansion is likely to generate other losses of natural vegetation 410 

associated with investment in ZH, including PRONAF driven deforestation in the Amazon and BF-led 

vegetation losses across most of Brazil (i.e. all biomes except the Caatinga). Notably cash-transfer 

programs focusing on poverty alleviation have been linked to deforestation elsewhere in the Neotropics 

because they promote the consumption of products that require large areas of land for their production 

(65). 415 

 

Discussion and policy recommendations. Our analysis of ZH’s social protection programs reveals 

synergies and trade-offs across outcomes and program components. We show that increases in food 

production (linked to the food availability aspect of food security - SDG 2) do not lead to improvements 

in other food security and health measures (child malnutrition and infant mortality - SDGs 2 & 3). 420 

Multi-dimensional poverty reductions (SDG 1), when present, are modest especially for the poorer 

sectors of society. ZH’s social protection programs have also had substantial effects on natural 

vegetation cover (SDGs 13 &15). Notably, the direction of these impacts vary across biomes, which is 

probably linked to regional differences in the capacity for investment to limit agricultural expansion 

and associated forest transitions. It is clear, however, when considering all outcomes that positive 425 

synergies (win-win outcomes) across divergent sustainable development goals arose more rarely than 

trade-offs (win-lose) and negative synergies (lose-lose) as a consequence of investment in social 

protection programs (Table 1; see Fig. 2 for examples). Notably positive synergies can arise across 
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paired outcomes relating to human well-being and environmental protection (Fig. 2). This is of notable 

policy relevance as environmental outcomes of social protection programs are much less well 430 

understood than their impacts on people (13).  

Several factors could have increased the probability that benefits of social protection programs 

are either limited or trade-off against additional sustainable development objectives. Access to ZH’s 

social security programs in Brazil has not been conditional on environmental compliance – this contrasts 

with the Brazilian Central Bank’s policy (Resolution 3,545) where rural credit conditioned on proof of 435 

environmental land registration has reduced deforestation rates in the Amazon (66). Environmental 

conditionalities imposed on social protection programs that encourage retention of natural vegetation 

on land holdings, whilst promoting farming practices that can increase yields on cultivated/grazed areas 

could help mitigate the trade-offs between protecting natural vegetation and food production objectives 

that we document. Such conditionalities would need to be coupled with mechanisms, such as 440 

agricultural extension assistance, to ensure that poorer and disadvantaged farmers (e.g. those with small 

land areas) are able to comply and are not discouraged from accessing social security programs. These 

conditionalities will not, however, curb negative environmental effects from non-recipient farmers who 

respond to program induced stimulation of local markets.  

Conditional cash transfers (BF) are associated with improved educational metrics in a few 445 

states, but they have had limited effectiveness in alleviating multi-dimensional poverty and health 

benefits (a key dimension of poverty). This seems likely to have been primarily driven by a diversion 

of funds to cash transfers and away from the institutions and infrastructure that are also needed to deliver 

health improvements (35, 55, 56). Reversing this change is likely to be costly but beneficial in delivering 

target outcomes. Conditioning receipts of benefits on maintaining some production of staple crops could 450 

also limit a shift away from staple crop production, which has probably also contributed to limited 

alleviation of multi-dimensional poverty and health outcomes, and increase family farmers’ resilience 

against price shocks.   

National and local contexts need to be considered when social protection programs are 

designed, implemented and evaluated. Our analyses can, however, inform discussion of the ZH inspired 455 

social protection programs that currently operate in sub-Saharan Africa, (e.g. conditional cash-transfers 

in Ghana (67), Purchase  from Africa for Africans (PAA Africa) in Ethiopia, Malawi, Mozambique, 

Niger, and Senegal (68), and rural credit in Zimbabwe (69)). Crop yields in these regions are typically 

stagnant, and are even falling in some locations, against a background of rapid rises in demand due to 

human population growth rates (70). Experimental and theoretical evidence, however, strongly indicate 460 

the potential for changes in agricultural practice to close yield gaps across much of sub-Saharan Africa 

and meet increasing demand when combined with additional intensification measures including 

irrigation and increased cropping frequency (71).  Targeting poverty through improving market access 

and off-farm opportunities will also make substantial contributions to increasing food security in sub-

Saharan Africa (72). ZH derived social protection programs that simultaneously tackle poverty and food 465 
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production are thus well placed to contribute to tackling the region’s food insecurity. This is also likely 

to generate health outcomes as food insecurity is a major contributor to poor health in sub-Saharan 

Africa (5). Our results highlight a number of factors that are likely to enhance the success of ZH inspired 

programs in sub-Saharan Africa and reduce trade-offs with other SDGs. Program effectiveness is likely 

to be particularly influenced by associated investment in health infrastructure and improved functioning 470 

of institutions, including site specific agricultural extension offices (73, 74), which are often limited in 

rural areas of sub-Saharan Africa (11, 75). Despite the potential to improve food production without 

requiring agricultural expansion that trades off against protecting natural vegetation and associated 

biodiversity and carbon stocks, avoidance of such negative synergies is likely to require including 

environmental conditionalities in social protection programs. This will also require supporting 475 

agricultural extension offices to advice on environmental aspects and institutional capacity to monitor 

compliance. Regular fine-scale monitoring and evaluations of interventions that consider social, 

economic and biophysical heterogeneity will also enhance outcomes by suggesting pathways towards 

program improvement during implementation cycles. 

While our analyses reveal that investment in ZH may have been less successful in meeting some 480 

of its objectives than indicated by previous analyses, we provide nation-wide evidence that investment 

has benefitted food production, and in some regions has additionally benefitted, multi-dimensional 

poverty and natural vegetation, particularly from interventions providing rural credit to family farmers. 

Recent political changes in Brazil have led to substantial budget cuts for core sub-programs assessed in 

this paper (76). Our analyses indicate that these policy changes may halt or even reverse advances that 485 

Brazil has made towards increasing food availability (SDG 2), reducing poverty (SDG 1), and 

conserving natural vegetation and its associated benefits (SDGs 13 & 15).  

Materials and Methods 

Our analysis relies on a longitudinal dataset spanning the period between 2000 and 2013, and covering 

between 3,786 and 4,976 rural municipalities in Brazil. This dataset is constructed from publicly 490 

available national and global datasets. Our identification strategy leverages heterogeneity in investment 

levels in ZH and its core sub-programs (BF and PRONAF) to assess how social protection programs 

influence a range of key indicators linked to multiple sustainable development outcomes: multi-

dimensional poverty (SDG 1), food security (SDG 2), health (SDG 3), and natural vegetation changes 

(relating to action to tackle climate change SDG 13 and life on land SDG 15). We conduct all our 495 

calculations in R version 3.4.2 (77), and improve the causal inference of our analysis by using a quasi-

experimental design. This design uses a suite of 15 key biophysical and socioeconomic variables to 

control for potential factors affecting ZH investment and our outcomes of interest, and to generate a 

series of covariate balancing generalized propensity score weights. We also conduct a series of 

robustness tests to verify that our results are not unduly influenced by data quality, spatial 500 
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autocorrelation, and endogeneity. Please refer to the Supplementary Information for a detailed 

description of our methods, including i) the construction of indicators, treatment variables, covariates 

and respective data sources; ii) information on our regression model specifications and quasi-

experimental design; and iii) robustness tests.  

Data Availability 505 

The data and analysis code have been deposited on the Harvard Dataverse [link: both data and code will 

be uploaded upon acceptance]. 
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Table 1. Impacts of per capita summed Zero Hunger (ZH), Bolsa Familia (BF) and PRONAF investment on food 

production, multi-dimensional poverty, child malnutrition, infant mortality and natural vegetation cover from robust 

multivariable regression models of a covariate-balanced sample that take confounding factors into account. 
 

ZH BF PRONAF 

Outcome Coef±S.E. P Int. R2 Coef±S.E. P Int. R2 Coef±S.E. P Int. R2 

Kcalories (per capita) 0.002±0.04 0.958 2E-09 0.93 -0.02±0.02 0.454 1E-17 0.93 0.03±0.01 0.005 2E-54 0.94 

Protein (per capita) 0.08±0.01 1E-08 1E-25 0.96 0.08±0.02 5.E-06 9E-14 0.96 0.04±0.01 3.E-06 6E-76 0.96 

Multi-dim. poverty (census) -0.01±0.01 0.144 4.E-07 0.77 0.05±0.01 6.E-07 0.001 0.79 -0.02±0.004 1.E-06 9E-09 0.77 

Multi-dim. poverty (SIAB) 0.01±0.01 0.380 
 

0.61 0.08±0.02 2.E-06 
 

0.61 0.002±0.01 0.850 0.013 0.61 

Child Malnutrition (SIAB) 0.05±0.04 0.192 
 

n/a 0.18±0.05 4.E-04 
 

n/a -0.05±0.03 0.099 
 

n/a 

Infant Mortality (census) 0.01±0.24 0.961 
 

0.13 0.05±0.22 0.805 
 

0.14 -0.01±0.24 0.976 
 

0.14 

Infant Mortality (SIAB) 0.01±0.04 0.777 
 

n/a 0.16±0.05 0.002 
 

n/a -0.02±0.04 0.660 
 

n/a 

Natural Veg. (km2) -0.01±0.004 9.E-05 9.E-06 0.99 -0.03±0.01 9.E-05 0.004 0.99 -0.01±0.003 0.018 5.E-05 0.99 

Outcomes refer to daily per capita kilocalorie and protein production, multi-dimensional poverty in the entire population (Census) and in the poorer sectors 
of society (SIAB), child malnutrition in the poorer sectors (SIAB), infant mortality in the entire population (Census) and the poorer sectors (SIAB), and area 
of natural vegetation. Model coefficients are reported ± one standard error. Interaction terms (Int.) show p-values for the interactions between investment 
and state in all models except the natural vegetation model in which the interaction is with biome type. When interaction terms are not significant we report 
results from models that only contain main effects. State and biome have been encoded with deviation (effects) coding, thus for models with an interaction 
the main effects expressed here represent the average effect of investment across Brazil. Daily per capita kilocalorie and protein production,   multi-
dimensional poverty (census), multi-dimensional poverty (SIAB) and area of natural vegetation are modelled using robust OLS, whilst infant mortality 
(census) is modelled using a Negative Binomial model, and infant mortality- and child malnutrition (SIAB) are modelled with a Quasi-Poisson model. Model 
r2 for infant mortality (census) is calculated using McFaddens pseudo r2 and is thus not comparable to those from OLS models. No pseudo-r2 is available 
for Quasi-Poisson models. All models have been adjusted to achieve covariate balance using the CBGPS method (19). 
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Fig. 1. Relative impact of Zero Hunger, Bolsa Familia and PRONAF investment (column 1-3) on daily per capita kilocalorie 
production, daily per capita protein production, multi-dimensional poverty in the entire population (census), multi-
dimensional poverty in the poorer sectors of society (SIAB), child malnutrition in the poorer sectors of society (SIAB) and 
natural vegetation cover (km2). Relative impact is defined as the modelled change (%) in the outcome variable when 
investment increases from a spatially uniform negligible value (1st percentile value) to the actual investment level. Column 
4 shows outcome values at baseline (i.e. year 2000 for multi-dimensional poverty (census) and 2004 for all others). Relative 
impact calculations are based on robust multivariable regression models of a covariate-balanced sample (Table 1) that take 
confounding factors into account including interactions between investment and state, or biome (in the natural vegetation 
cover model). States and biomes with significantly different outcomes to the overall effect are indicated by thick black 
borders; thin black border show region borders (row 1-5) and ecological biome borders (row 6). We use a normative colour 
scheme, where in columns 1-3 blue indicates beneficial impacts and red non-beneficial impacts. In maps of baseline values 
(column 4) deeper red indicates municipalities with a worse starting condition, such as high multi-dimensional poverty or 
lower coverage of natural vegetation. Grey areas signify municipalities not included in the analysis because they were 
urban, have insufficient data or fall within the model reference state or biome for which no model statistics are available. 
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Fig. 2. Positive synergies (win-wins), trade-offs (win-lose) and negative synergies (lose-lose) from a) ZH, b) BF and c) 
PRONAF investment across three examples of sustainability outcomes, i.e. changes in per capita protein production 
(SDG 2), multi-dimensional poverty (census; SDG 1) and natural vegetation (SDGs 13 & 15). These have been selected 
as examples of key outcomes related to divergent SDGs. Coloured bands indicate the type of relationship (positive 
synergies (win-win), negative synergies (loose-loose) or trade-offs) between outcome variables; with the thickness of 
each link representing the percentage of municipalities that exhibit each type of relationship for each pair of outcome 
variables (indicated by the scale bar on the edge of each circle). Impact of program outcomes is calculated from robust 
multivariable regression models of a covariate-balanced sample (Table 1; n = 4,663-4,924 municipalities depending on 
the outcome pairings).  
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Supplementary Information Text 

 

Materials 30 

 

Unit of Analysis. We compile data at the municipality level, i.e. Brazil’s lowest administrative unit. 

We confine analyses to rural municipalities because ZH policies implemented in rural and urban areas 

differ in their implementation, mechanisms, and effectiveness (1, 2), and because small rural farmers 

are vital for national food security. Small farmers produce 70% of the food consumed in Brazil but also 35 

suffer disproportionately from food insecurity (2). We use the OECD definition of urbanisation, 

excluding municipalities with human population densities above 150 inhabitants/km² (3), as the official 

Brazilian definition overestimates the distribution of urban areas (4). 

During our study period 41 municipalities split into two or more municipalities. In these cases, 

we recalculate data for the end of the study period to match the original municipality boundaries at the 40 

start of the study period using two approaches. If data were available for each of the new municipalities 

we summed these and then recalculated data based on the older municipality boundaries. Alternatively 

we calculated weighted means based on municipality area for average slope, average elevation, and 

drought incidence; and by population size for census derived infant mortality and life expectancy. 

Municipalities which merged during our study period (four for the 2004-2013 analyses and 45 for the 45 

2000-2010 analyses) had to be excluded because the change in municipality borders (multiple 

municipalities merged to create single municipalities) were such that 2010 or 2013 (endpoint) values 

could not be accurately assigned baseline values. See Table S10 for more details of specific model 

exclusions and Table S1 for final sample sizes.  

 50 

Outcome variables. We use eight response variables to cover key dimensions of food availability, 

multi-dimensional poverty, health and natural vegetation loss. Our models include values at the start of 

program implementation to control for baseline conditions. 

 

Food production. We use daily per capita kilocalorie and protein production. We use these two 55 

measures to make a distinction between food quantity (kilocalories) and food quality (protein) (5). Both 

measures are based on annual municipal agricultural production data from the national statistics office 

IBGE (6). We combine twelve main Brazilian agricultural products, and convert each quantity produced 

(kg/tonnes) into kilocalorie and protein metrics using standard Brazilian and/or US product 

macronutrient/food energy values (7, 8). We use the average of these two values when both are available 60 

(Table S5). We then convert to daily per capita values based on the municipality’s population size in 

the focal year (using data from IBGE: https://www.ibge.gov.br/). The agricultural data does not include 
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subsistence food production, but this is a small and declining proportion of total production due to the 

shift towards a more modernized market oriented agricultural systems (9).  

 65 

Multi-dimensional poverty (MPI). We use data from the 2000 and 2010 demographic census to 

generate a multi-dimensional poverty measure, which we refer to as multi-dimensional poverty 

(census). Our measure combines equally weighted data on health, education, and living standards based 

on the recommendations of Alkire and Foster (10). Because household-level data are not available as 

part of the census micro-data, we use the geometric mean from all census households to generate our 70 

combined multi-dimensional poverty measure. This general approach follows the method used to 

calculate Brazil’s official Municipal Human Development Index (MHDI) (11), which is closely 

correlated with our measure (r = 0.90 and 0.84 for 2000 and 2010, respectively), despite the underlying 

dimensions being somewhat different. We do not, for instance, include a financial income variable and 

rather include information on living standards given it is a more direct measure of deprivation of 75 

capabilities in line with the rationale of the MPI (10). For the education dimension we focus solely on 

primary and lower secondary school attendance, which is compulsory in Brazil, as this is a main focus 

of ZH programs (9). Fig. S3 illustrates relationships between the multi-dimensional poverty (census) 

and MHDI dimensions. Whilst the need to use the geometric mean (due to data availability) prevents 

us from assessing changes in the number of people below set poverty thresholds (10), our index provides 80 

a strong indicator of temporal change in multi-dimensional poverty. In addition, we use data from the 

Brazilian National Primary Information System (SIAB) for 2004 and 2013 (12), which we refer to as 

multi-dimensional poverty (SIAB) to assess multi-dimensional poverty change in the poorer sectors of 

society. SIAB contains information for all families targeted by The Family Health Program. This is the 

national decentralised primary health care program aimed at providing health care coverage especially 85 

in deprived areas (13). The multi-dimensional poverty (SIAB) measure combines equally weighted data 

on health, education, and living standards but uses slightly different variables for each dimension than 

those used by multi-dimensional poverty (census) due to differences in primary data collection (see 

Table S6). Our two poverty measures are thus related but not directly equivalent. 

 90 

Child malnutrition and infant mortality. We use child malnutrition and infant mortality as measures 

of food insecurity and health (14). Our measures of infant mortality are derived from both the national 

census and SIAB. The national census does not include child malnutrition measure and these data are 

derived solely from SIAB. Our malnutrition data combines data on underweight new-borns and 

underweight children (between 12 and 24 months). We combine these two measures using the 95 

geometric mean. We avoid double counting children weighed more than once at age one by selecting 

records for only four months a year, selecting the two wettest and two driest months per municipality 

per year to avoid a temporal bias, based on fine-scale monthly municipal rainfall data (15). Our measure 

of infant mortality is the number of annual infant deaths (children <1 year) per 100,000 live births. We 
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use data from both SIAB and the national demographic census as this allows us to consider infant 100 

mortality both in poorer sectors of society, and the entire municipal population. We define child 

malnutrition per 10,000 children, and infant mortality per 100,000 live births, rather than the more 

standard per 1,000 and 100, respectively, in order to retain more information when modelled using a 

Poisson modelling framework which does not allow decimal values. 

 105 

Natural vegetation cover. We use a 30m resolution Landsat-derived remote sensing product published 

by The Brazilian Annual Land Use and Land Cover Mapping Project v2 (16). Our measure focuses 

specifically on natural vegetation change for each of the six Brazilian biomes (Amazon rainforest, 

Cerrado, Caatinga, Pantanal, Atlantic Forest, and Pampa). The MapBiomas dataset maps vegetation 

cover according to 28 vegetation classes: we use 12 classes to construct our area under natural 110 

vegetation (Table S7). We calculate area of natural vegetation in each municipality and validate these 

estimates by comparison with alternative datasets, i.e. Terra Class for the Amazon and Cerrado, 

PMDBBS for the Caatinga and Cerrado, and SOS Atlantic Forest (Table S8). We only consider pixels 

that have been observed in both years and also ensure that the majority of each municipality in the 

analysis is consistently observed by excluding 17 municipalities where less than 50% of the total area 115 

was observed in either 2004 or 2013 due to cloud cover. As a robustness test we also consider a more 

stringent threshold and exclude municipalities with >5% cloud cover in either 2004 or 2013.     

 

Treatment variables - ZH policy implementation. We use data on annual municipal investments 

obtained via government managed online platforms (www.dados.gov.br and www.mds.gov.br) of the 120 

four main ZH sub-programs: PRONAF, PAA, PNAE and BF. All four sub-programs grew steadily 

since inception (Fig. S4), and show large spatial variation in investment across Brazil (Fig. S1). We 

exclude other minor sub-programs because they lack data at a municipal level and are much more 

limited in geographical spread. Information on the number of beneficiaries is publicly available for 

some ZH sub-programs, but this variable is not defined in a consistent way as one beneficiary could 125 

represent one individual, one co-operative that contains multiple farmers (but an unknown number of 

farmers or people) or one family that contains an unknown number of family members. It is thus 

impossible to use such data to capture the number of individuals in a municipality targeted by the ZH 

program or its sub-programs. A financial value capturing ZH program investment is thus more 

appropriate for quantifying spatial variation in investment. 130 

 We measure ZH investment as the summed per capita financial investment allocated to each 

municipality from the four sub-programs between 2004 and 2013. The ZH program was officially 

launched in 2003. However, we focus the majority of our analysis from 2004 onwards because 

investment levels in the program’s first year were small (17, 18) and major changes to ZH’s largest sub-

program, BF, were implemented in 2004 (19). PAA investment is included from 2006 onwards 135 

(inclusive) due to insufficient data availability but investment prior to 2006 was minimal (Fig. S4). For 
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analyses using outcome variables spanning 2000 to 2010, we match investment to the same time frame 

and measure ZH as summed ZH sub-program investment from 2000 to 2010. Investment values are 

expressed as 2013 values (in units of R$1000 per capita; using population data from IBGE) using 

Brazil’s inflation index IGP-DI.  140 

 

Confounding variables. We extract data on 15 biophysical and socio-economic factors that are used 

to calculate covariate balance generalized propensity scores and thus limit potential non-random 

treatment allocation bias by reducing the correlation between treatment and potential confounding 

factors. The variables are also used as control variables in our regression models. Here we describe each 145 

variable and the rationale for inclusion. 

 

i) Total municipal area. Administrative area can significantly influence social and environmental 

outcomes in impact estimation studies (20), and has been linked to implementation efficiency of BF 

(21). Municipal area data are taken from IBGE (https://www.ibge.gov.br/). 150 

 

ii) States. States in Brazil have substantial decision-making power, heterogeneous economies, and 

receive different amounts of federal financial support (9) which could influence the effectiveness of ZH 

investment.  

 155 

iii) Ecological biome. Brazil can be divided into six ecologically distinct biomes (Amazon rainforest, 

Cerrado, Caatinga, Pantanal, Atlantic Forest, and Pampa). These differ substantially in ecological and 

biophysical conditions and degree of protection (22), with significant implications for agricultural 

production and rural livelihoods and interpretation of the effects of natural vegetation loss. We calculate 

the percentage land cover of each biome within each municipality using official biome boundaries (23). 160 

When using biome as a predictor in models of food security, health and multi-dimensional poverty 

outcomes we assign a specific biome to each municipality if ≥ 80% of a municipality’s area falls within 

a single biome, and assign each of the 253 municipalities that did not meet this criterion to one of seven 

transition categories (e.g. Cerrado/Atlantic forest) creating a 13 level factor (Biome 13cat). When 

modelling natural vegetation we classified each municipality as the biome which comprised the 165 

majority of land cover (creating a 6 level factor; Biome 6cat) as use of the transition categories adversely 

affected model convergence.   

 

iv) Population density. Population pressure is a key driver of land-use change and can have substantial 

effects on land-use practices, access to resources and ultimately, livelihoods (24). We measure baseline 170 

population density using population estimates and municipal area data from IBGE. 
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v) GDP per capita from public services. Financial support for local institutions can have substantial 

effect on livelihoods and wellbeing. We measure baseline levels of per capita municipal spending on 

public administration including areas of health, education and social security (25). We deflate these 175 

values relative to 2013, expressed per capita (in R$1,000 units) using population data from IBGE. 

 

vi) Electoral patterns.  

Electoral patterns can influence public spending (26–28), and thus influence our treatment allocation. 

This could arise if parties that are in power invest more in regions in which they have a high share of 180 

the vote (to reward voters) or potentially increased investment in regions where vote share is lower (to 

encourage more votes in subsequent elections). These mechanisms could apply to national elections, as 

ZH investment is partly dependent on financial transfers to municipalities from federal government. 

They could also apply, however, in elections held at the municipality level as municipalities have 

substantial autonomy in deciding social policies and budget (29). We thus calculate three measures of 185 

electoral patterns using data from the Superior Electoral Court data repository (30): V1) Average 

municipal vote share (%), per municipality, in the presidential elections for the winning candidate, V2) 

Sum of years (over the focal period of our analysis) the municipality’s mayor is from the same party as 

that of the current president, and V3) Sum of years the municipality’s mayor is from a main party in 

Brazil. For V3 we create one variable for each of six major parties in Brazil (PMDB, PSDB, PFL, PTB, 190 

PP, and PT), as together they made up 70% and 67% of all mayor positions in the 2000-2010 and 2004-

2013 periods, respectively. Elections are generally held in the fall therefore we only expect vote share 

for a winning party in one year, e.g. 2000, to have an influence on treatment allocation in the subsequent 

year, i.e. 2001. The contribution of each year to these three metrics is weighted by the proportion of 

investment that relates to that year, i.e. electoral patterns that could influence investment levels in years 195 

when investment in ZH is higher have greater weight. Relationships were consistently limited between 

investment and V2 (largest Spearmans’ rho coefficient = 0.051) and V3 (largest Spearmans’ rho 

coefficient = 0.149), but much larger correlations arose between investment and V1 (largest Spearmans’ 

rho coefficient = 0.712: Table S9), and we thus select V1 as the most important variable to control for 

electoral patterns. 200 

 

vii – ix) Land use. To account for any influence of the agricultural sector on our outcome variables we 

control for Area under crop production- (6) and Area under pasture at baseline (31). Area under crop 

production at baseline respectively refers to year 2000 and 2004 for the 2000-2010 and 2004-2013 

models. Area under pasture is measured in 2006, a few years after our baselines as data for earlier years 205 

were not available. We use the 2006 census data rather than MapBioma’ data because a large proportion 

of Brazil’s farm area is classified as “agriculture or pasture” in the MapBiomass dataset (24% in version 

3, accessed February 2019 www.mapbiomas.org/stats) thus creating considerable uncertainty in 

estimates of the amount of crop and pasture land.  

http://www.mapbiomas.org/stats
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We also control for the area of small-scale farms, i.e. area by farms <50 ha at baseline (31), again only 210 

available for 2006. We adopt this size threshold rather than the frequently used 2 hectare threshold 

because this excludes a substantial proportion of smallholder agriculture (32).  

 

x) Remoteness. We control for remoteness, i.e. municipal travel time to a major city, which we use as a 

proxy for municipal access to larger markets and health services. We adapt the algorithm used by the 215 

Joint Research Centre of the European Commission (33), and incorporate information on land cover 

(34), transportation routes (35), and slope and elevation (36), to arrive at the fastest travel time from 

each municipality centroid to a major city, following Oldekop et al. (37). We use cities with at least 

50,000 inhabitants as this is where large markets and adequate health services tend to be found (38, 39). 

Note that these travel times are correlated with travel times to both smaller and larger cities: 10,000 (r 220 

= 0.94), 150,000 (r = 0.86) and 250,000 inhabitants (0.74).  

 

xi) Drought intensity. Drought could have adversely impacted our baseline and current food security 

measures (40–42). We calculate an average municipal drought index using the global Standardised 

Precipitation-Evapotranspiration Index (SPEI)(43). This continuous index ranges from -2 (extremely 225 

dry) to +2 (extremely wet) and is a standardized variable (mean zero and unit variance) expressed as 

the deviation of the current climatic balance (precipitation minus evapotranspiration potential) from the 

long-term (1901-2013) climatic balance. We use the average drought index per municipality, for three 

years spanning both sides of our baseline and endpoint years and then subtract the baseline index from 

the endpoint index to create a single measure which effectively captures the change in drought intensity 230 

over the period in which we measure the change in our outcome variables. 

 

xii) Agricultural credit. We also consider possible effects of other farming assistance programs. We 

control for the amount of rural agricultural credit per capita (that is not PRONAF credit) regulated by 

the Brazilian Central Bank (44) allocated to each municipality for the full period in which we measure 235 

change in our outcome variables (2000-2010 and 2004-2013). We deflate these values relative to 2013, 

expressed per capita (in R$1,000 units) using population data from IBGE.  Rural credit can influence 

food security (45, 46) and land use change (47). 

 

xiii-xiv) Slope and elevation. We calculate and control for average slope (in degrees) and average 240 

elevation (in meters) per municipality using the global digital elevation model v2 (36), on the basis that 

both contribute to agro-ecological conditions which affect food production, natural vegetation cover 

and livelihoods (48). 

 

xv) Conservation policies. We control for Area under protection (at baseline) when we model the effect 245 

of ZH investment on natural vegetation cover, based on previous studies showing the influence of 
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protection on deforestation (20, 49). Boundaries of all designated protected areas, i.e. IUCN categories 

I-VI and indigenous areas, were obtained from the World database on Protected Areas 

(www.wdpa.org). We only consider protected areas established by 2004, but note that the area under 

protection by 2004 is highly correlated to the area under protection by 2013 (r = 0.97).  250 

 

Methods 

 

Covariate Balancing Generalized Propensity Score. We create Covariate Balancing Generalized 

Propensity Score weights (CBGPS) using the “CBPS” package (50) to capture potential treatment 255 

selection bias, i.e. dependence between treatment assignment and outcome given covariates (predictor 

variables), which if left untreated can bias the estimated effects of interest (51). The approach builds on 

previous methods of impact estimation using observational data, is shown to increase the robustness to 

model misspecification, and is applicable to a continuous treatment variable such as our measures of 

ZH investment (50). 260 

The covariate balancing CBGPS method (50) offers both a parametric and non-parametric 

calculation to generate covariate balancing weights. In the parametric calculation a generalized 

propensity score is estimated by modelling treatment (i.e. level of ZH investment) as the function of 

pre-treatment covariates. Then inverse probability weights, whose aim is to ensure the lowest possible 

correlation between treatment and covariates, are created on the basis of the generalized propensity 265 

score. The non-parametric calculation does not directly estimate a generalized propensity score in the 

first instance but rather uses an empirical likelihood approach to choose inverse probability weights 

which ensure minimal correlation between treatment and covariates (for more detail see (50)).  

We use both approaches and retain the weights that result in the greatest improvements in 

balance, i.e. the lowest correlation between investment (treatment) and confounding variables. We 270 

create distinct weights for each individual regression model, and use the same predictor variables to 

create the covariate balancing weights as those used in the subsequent adjusted regression model (see 

Table S1 for a full list of predictor variables used).  

The weights resulted in great reductions in treatment-covariate correlations in all our regression 

models, and an average treatment-covariate correlation for each model of 0.07 (compared to an original 275 

average treatment-covariate correlation of 0.14) (Fig. S5). 

 
Model structure and variable transformations. The appropriate model structure for each outcome 

variable was decided by fitting four potential theoretical distributions (normal, log-normal, Poisson and 

Negative binomial) to each outcome using R’s “fitdistrplus” package (52). Daily per capita Kcalorie 280 

and protein production, multi-dimensional poverty (census), multi-dimensional poverty (SIAB) and 

natural vegetation cover fit a log-normal distribution and are subsequently modelled using ordinary 

least squares (OLS) regressions after transforming the dependent variables to log base ten. The 

http://www.wdpa.org/
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investment variable and continuous covariates (except drought intensity and electoral patterns) are also 

transformed to log base ten, as this yields improved fit of linear relationships and Gaussian distributions 285 

of resultant model residuals. For the variables that include zero we add a constant of half of the 

minimum value before applying log transformations. Model diagnostics revealed the presence of 

outliers and we thus use R’s “robustbase” package with the MM-estimator to conduct robust regressions 

that reduce the influence of outliers on model outputs (53). This frequently used technique has a high 

statistical efficiency and can cope with multiple outliers without breaking down (54). The MM-290 

estimator also provides standard errors which are robust against  heteroscedasticity and autocorrelation 

(54).  

Child malnutrition (SIAB), infant mortality (census) and infant mortality (SIAB) were count 

data and exhibited over-dispersed Poisson distributions, tested using R’s “AER” package (55). We 

modelled Infant mortality (SIAB) and Child malnutrition (SIAB) using a quasi-Poisson model and 295 

Infant mortality (census) using a negative binomial model. The choice between the two model structures 

was based on the outcome’s mean-variance structure (56), selecting quasi-Poisson models when there 

was a linear relationship between the mean and variance. A robust MM-estimator cannot be calculated 

for Quasi-Poisson and Negative Binomial models. We thus follow the suggestion from Coxe et al. (57) 

and use another measure of influence, DFBETAS, to conduct analyses that are equivalent to robust 300 

regressions. DFBETAS can be calculated for each regression coefficient to “assess the number of 

standard deviations by which an individual changes each regression coefficient” p. 130 (57). Based on 

the most theoretically important variable for us – the investment variable – we run robust models which 

exclude highly influential points for the investment regression coefficient, defined as DFBETAS above 

the recommended DFBETAS cut-off of 2/sqrt (n) (57, 58).  305 

 

Interaction terms. State and biome predictors are coded using deviation coding (also known as effect 

coding). State- investment and biome- investment interaction terms are retained when 95% confidence 

intervals (CIs) for the added parameter(s) exclude zero, and when there is improvement in model fit, 

judged for most models by a decrease in model’s AIC value (of at least 2 AIC points) and judged in 310 

robust models calculated with an MM-estimator by adjusted  R2 values (59). State-investment 

interactions were retained when modelling per capita Kcalorie-, per capita protein and multi-

dimensional poverty (census) as a function of summed ZH, PRONAF and BF investment, when using 

all data and when excluding lower quality data, as well as when modelling multi-dimensional poverty 

(SIAB) as a function of PRONAF investment using all data, and multi-dimensional poverty (SIAB) as 315 

a function of BF investment when excluding lower quality data.  Biome-investment interactions were 

retained when modelling natural vegetation cover as a function of summed ZH, BF and PRONAF 

investment. All state and biome interaction effects are expressed relative to the main investment 

parameter which expresses the average effect across Brazil.  

 320 
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Visualising investment impacts. We use the resultant regression equations from core models to 

quantify the impact of investment by calculating the predicted value of our outcome variables under 

three scenarios i) a spatially uniform negligible investment level (defined as the 1st percentile 

investment value, thus ensuring we predict inside the range of our data), ii) the actual investment 

received in each municipality, and iii) spatially uniform investment levels equating to the 50th 325 

percentile investment level. We then generate maps of relative impact of actual investment (defined as 

percentage change in predicted outcome between a negligible and actual investment) (Fig. 1). Because 

ZH investment was highly spatially heterogeneous (Fig S1), we also generate maps of relative impact 

under a spatially uniform investment level (defined as percentage change in predicted outcome between 

a negligible and a 50th percentile investment level) (Fig. S2). This mapping approach helps to visualise 330 

spatial variation in the effectiveness of investment whilst accounting for heterogeneity in the magnitude 

of investment. 

 
Robustness tests. We run robustness tests to look for potential sources of sampling bias or data quality 

issues, lack of independence amongst observations (spatial autocorrelation), and lack of independence 335 

between the treatment variable and error term (endogeneity). Checking for spatial autocorrelation and 

endogeneity also provide information on the potential presence of unmeasured confounders (60, 61). 

 

Data Quality. We re-run models excluding municipalities for which there was uncertainty about data 

quality, defined as: i) municipalities larger than 10,000 km2 as larger municipalities are more likely to 340 

have unrepresentative socio-economic data (62); ii) for models using SIAB data (child malnutrition, 

infant mortality and multi-dimensional poverty) municipalities that did not meet the ten quality criteria 

set by Brazil’s Ministry of Health for SIAB data (63) (e.g. municipalities with small sample sizes in the 

microdata (e.g. <100 families/350 people registered with data), limited temporal data (e.g. 

municipalities with 0 families attended to in a month), or non-logical data (e.g. >1000 infant deaths per 345 

1000 live births) (see Table S10 for a full list of criteria), and iii) for natural vegetation cover models, 

municipalities in which cloud cover in the natural vegetation dataset covered more than 5% of the 

surface area in either 2004 (the baseline) or 2013 as this could reduce the accuracy of natural vegetation 

cover estimates.   

The number of municipalities excluded due to possible quality issues range from 98 to 1,847 350 

depending on the outcome variable (Table S10). Exclusions based on municipality size, employed to 

all models, exclude 0-61% of municipalities in a state with the largest effects in northern and centre-

western states. Exclusions based on high cloud cover, employed to the natural vegetation cover models, 

affect 12 of 16 states situated in the north or north-east, and one state elsewhere (Rio Grande do Sul in 

the south) reducing state sample sizes by between 1 and 75%. The largest exclusions occur in models 355 

using SIAB data (multi-dimensional poverty-, child malnutrition-, and infant mortality) based on the 

Ministry of Health’s quality criteria, with 15 to 100% of municipalities being excluded per state. Whilst 
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Amapa (in the north) was the only state from which all municipalities were excluded there is no marked 

geographical variation in the percentage of municipalities that are excluded. When combining data 

quality criteria robustness models excluded 77.0% and 99.7% of the Amazon and Pantanal biomes’ 360 

area, thus generating significant spatial bias. We thus exclude these biomes from the robustness models 

assessing change in natural vegetation cover.  

 In a quarter of the models (6 of 24) inference varies between core and robustness models (i.e. 

the PRONAF and per capita Kcalorie production and natural vegetation change models, BF and SIAB 

derived multi-dimensional poverty model, the BF infant mortality (SIAB) model, and when assessing 365 

the impact of overall ZH and BF investment on natural vegetation change in the Caatinga) we discuss 

discrepancies in the main text (although the impact on our inference is rather limited). In all other cases 

inference from the robustness and core models was extremely similar and we focus on the results from 

the core model as this enables us to visualise modelled impacts across Brazil. There were occasional 

small differences, however, in the precise location and extent of areas in which treatment impacts are 370 

significant and non-negligible. Specifically, i) in one state (Para in the north) the effect of PRONAF 

investment on per capita protein production changes from a predicted increase in outcome in the core 

model to a predicted reduction in the robustness model; and ii) in one state (Mato Grosso in the central 

west) the effect of BF investment on per capita protein production changes from a predicted reduction 

in outcome in the core model to a predicted increase in the robustness model). 375 

 

Spatial autocorrelation. We assess the presence of spatial autocorrelation, given that this can violate 

the assumption of independence in classical statistics and influence results (64). Spatial autocorrelation 

also indicates that spatially determined unmeasured confounders may be present, further facilitating 

assessment of endogeneity (61). We test for spatial autocorrelation using two-sided Moran’s I tests 380 

implemented in R’s “spdep” package (65) on all core model residuals and model residuals from the 

covariate balancing stage (CBGPS). As only the parametric, and not the non-parametric, CBGPS 

models can provide residuals (50) we follow Oldekop et al. (66) and create our own propensity score 

models, i.e. in our case linear regressions where investment is the function of predictor variables, and 

test for spatial autocorrelation in the residuals of these models. We do so using first a simple spatial 385 

neighbourhood matrix that classifies municipalities as neighbours if they share a common border. We 

then use a distance based neighbourhood matrix that generates a weight matrix based on inverted 

euclidian distance between each municipality centre, though capped at 0.75 of the maximum given the 

extreme sizes of some Brazilian municipalities.  

Moran’s I values for 78% of our models were not statistically significant. Where Moran’s I 390 

values were significant they were very close to zero (range -0.027 to 0.031; Table S11). We thus 

conclude that our model inference is not biased by spatial autocorrelation and that there is no evidence 

that spatially determined unmeasured confounders influence our outcomes variables.   
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Endogeneity. Endogeneity between model error terms and investment variables can influence causal 395 

inference and such endogeneity is typically caused by unmeasured confounding variables (60).  A 

Hausman test can be used to test for endogeneity. This requires identifying the omitted variable that 

generates endogeneity, but this is rarely possible in observation studies (as is the case for our models), 

and selection of appropriate instrumental variables – which is often difficult (60). In the absence of the 

Hausman test we follow Oldekop et al.(66), and assess whether the error term (model residuals) and 400 

investment variable are correlated running a series of non-parametric Spearman’s rho correlation tests. 

The correlation coefficients (Spearman’s rho) between model residuals and the model investment 

variable are very low for all core models and range from -0.085 to 0.049 (Table S12). Thus, we conclude 

there is no evidence of endogeneity between our investment variables and model error term, providing 

further evidence that it is unlikely that unmeasured confounders influence or bias our results. 405 
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Supplementary Tables 

 

Table S1. Model variables for the Zero Hunger (ZH)-, Bolsa Familia (BF)- and PRONAF models 
Outcome Treatment  Confounding variables n 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
log10(Kcal 

(pc)) 
log10(ZH)* State      

B 
     

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
4,940 log10(BF)* State          

log10(PRONAF)* State         
log10(Protein 

(pc)) 
log10(ZH)* State        

 
    

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
4,940 log10(BF)* State     B     

log10(PRONAF)* State          
log10(Multi-

dim. poverty 
(census)) 

log10(ZH)* State      
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4,976 log10(BF)* State          

log10(PRONAF)* State         
log10(Multi-

dim. poverty 
(SIAB)) 

log10(ZH)      
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3,786 log10(BF)* State          

log10(PRONAF)* State         
Child 

malnutrition 
(SIAB) 

log10(ZH)      
 

  
 

    
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   
3,828 log10(BF)* State       B   

log10(PRONAF)         
Infant 

mortality 

(census) 

log10(ZH)      
 

  
 

    
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   
4,976 log10(BF)      B    

log10(PRONAF)         
Infant 

mortality 
(SIAB) 

log10(ZH)      
 

  
 

    
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   
4,305 log10(BF)      B    

log10(PRONAF)         
log10(Natural 
vegetation 

(km2)) 

log10(ZH)*Biome (6cat)        
 

    
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

 
4,924 log10(BF)*Biome (6cat)       B  

log10(PRONAF)*Biome 
(6cat) 

        

Pc = per capita. B = baseline conditions of the outcome variable. N = model sample size. Outcome years correspond to 2010 for multi-dimensional poverty (census) and Infant mortality (census) (with 
corresponding baseline (B) values from 2000), all other outcomes for year 2013 (with B values from 2004). Three treatments are tested separately, i.e. total municipal ZH (sum of BF, PRONAF, PAA 
and PNAE), BF and PRONAF investment per capita from baseline to endpoint year. The confounding variables, whose inclusion in each model are indicated by ticks/B, are 1. ZH investment that is 
not captured in the sub-program (included in the BF and PRONAF models only), 2. State, 3. Biome (13cat), 4. Biome (6cat), 5. Kcal (pc), 6. Protein (pc), 7. Multi-dimensional poverty (census or SIAB), 
8. Infant mortality (census or SIAB), 9. Child malnutrition (SIAB), 10. Natural vegetation (km2), 11. GDP Public administration (pc), 12. Crop area (ha), 13. Pasture area (ha), 14. Small-scale farm area 
(ha), 15. Drought intensity, 16. Rural credit (pc), 17. Remoteness (Minutes), 18. Elevation (meter), 19. Slope (degree), 20. Municipal area (km2), 21. Population density, 22. Electoral patterns, and 23. 
Protected area (km2). Some models include an interaction term between treatment and state or biome (indicated by *). For the natural vegetation models Biome (6cat) is used instead of Biome (13cat), 
because the latter variable had too small sample sizes across the seven transition-biome categories for the models to run successfully with biome interaction effects. Time-variant confounding variables 
which might risk being influenced by the treatment are set at the baseline year to minimize influence from investment. Some exceptions exist, i.e. data for 13. Pasture area, and 14. Small-scale farm 
area are only available for 2006. Also, 7. baseline multi-dimensional poverty (census), which corresponds to year 2000, is used as a baseline confounding variable for the 2004-2013 Kilocalorie-, 
Protein- and Natural vegetation models as opposed to multi-dimensional poverty (SIAB) (which corresponds to year 2004) because the geographical coverage of multi-dimensional poverty (census) 
better matches the coverage of these outcome variables). Confounding variable 16. Rural credit incorporates data for the whole time-period as it is likely unaffected by treatment. Likewise 15. Drought 
intensity, incorporates three years spanning our baseline and endpoint years. All continuous variables besides the outcome for Infant mortality and Child malnutrition, and the Drought intensity 
confounding variable are transformed to log base 10. 
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Table S2. Descriptive statistics for all Zero Hunger (ZH)-, Bolsa Familia (BF)- and PRONAF model 
variables.  

Variable Description Time 
frame 

Mean SD 

Dependent variables (and corresponding baseline values):  
 

 

Kcal  
(pc/day) 

Kilocalories produced per capita per day (pc/day) in 2013 and 
2004 

Endpoint 157,902 442,278 

Baseline 84,420 240,796 

Protein  
(gram pc/day) 

Grams of protein produced per capita per day in 2013 and 2004 Endpoint 1,975 5,665 

Baseline 1,410 3,916 

Multi-dim. poverty 

(census) 
Multi-dimensional poverty index for the entire population in 2010 
and 2000 

Endpoint 0.058 0.031 

Baseline 0.116 0.06 

Multi-dim. poverty 
(SIAB)  

Multi-dimensional poverty index in the poorer sectors of society in 
2013 and 2004 

Endpoint 0.059 0.039 

Baseline 0.07 0.04 

Underweight 
children (SIAB) 

Geometric mean of number of underweight children at birth- and 
age 12-24 months per 10,000 children in the poorer sectors of 
society 2013 and 2004 

Endpoint 253 290 

Baseline 665 458 

Infant mortality 
(census) 

Number of infant (<1 year) deaths per 100,000 live births for the 
entire population in 2010 and 2000 

Endpoint 1,958 717 

Baseline 3,393 1,388 

Infant  
mortality (SIAB) 

Number of infant (<1 year) deaths per 100,000 live births in the 
poorer sectors of society in 2013 and 2004 

Endpoint 2,255 11,072 

Baseline 2,547 2,589 

Natural vegetation 
cover (km2) 

Total area (km2) under natural vegetation in 2013 and 2004 Endpoint 1,078 5,331 

Baseline 1,103 5,402 

Treatment variables:  
 

ZH (R$/pc) Total per capita ZH investment in Brazilian Reals, i.e. sum of per 
capita BF, PRONAF, PAA and PNAE for 2000-2010; and 2004-
2013 

Total 2,550; 
3,829 

 

2,704; 
3,948 

BF (R$/pc) Total BF investment per capita for 2004-2010; and 2004-2013 Total 692; 
1,216 

398; 
696 

PRONAF (R$/pc) Total PRONAF investment per capita for 2000-2010; and 2004-
2013 

Total 1,716; 
2,439 

2,796; 
4,118 

Confounding variables:  
 

 

Multi-dim. poverty 
(census) 

Census based multi-dimensional poverty index for year 2000 Baseline 0.116 0.06 

GDP Public 
Service (R$/pc) 

GDP from public services per capita for years 2000; and 2004 Baseline 1,533; 
1763 

535; 
554 

Kcal  
(pc/day) 

Kilocalories produced per capita per day for years 2000; and 2004 Baseline 66,397; 
84,420 

201,853; 
240,796 

Crop area (ha) 
 

Total crop area for years 2000; and 2004 Baseline 9,643; 
11,322 

21,258; 
26,845 

Election pattern 
(% vote share) 

Average municipal vote share for the winning presidential 
candidate (%) for 2000-2010; and 2004-2013, with contribution of 
each years’ vote share weighted by the proportion of investment 
for that year 

2000-2010 
ZH 
BF 

PRONAF 
2004-2013 

ZH 
BF 

PRONAF 

 
59 
59 
59 

 
11 
13 
10 

   

 60 13 

 60 
60 

13 
14 

Pasture area (ha) Total pasture area for year 2006 Baseline 31,003 81,712 

Small-scale farm 
area (< 50 ha) 

Total hectare farms <50 hectare for year 2006 Baseline 8,379 
 

8,627 

Remoteness 
(min.) 

Travel time in minutes from the municipality centroid to the nearest 
city with pop => 50,000 in 2010 

 187 
 

410 

Drought intensity 
 

Drought intensity, based on SPEI for baseline and endpoint 
periods (see SI Appendix for detailed description) 

Total 1.4;  
0.37 

2; 
2.24 

Credit (R$/pc) Total rural non-PRONAF agricultural credit for 2000 – 2010; and 
2004 – 2013 

Total 7,280; 
9,427 

12,708; 
16,306 

Elevation (m) Average elevation within each municipality  456 281; 

Slope (degree) Average slope within each municipality  8.2 3.8; 

Pop.Density Total population per km2 for years 2000; and 2004 Baseline 30; 31 29; 30 

Municipality area 
(km2) 

Area within municipality boundaries in 2000; area within 
municipality boundaries in 2004; and area that was cloud free in 
both 2004 and 2013 within 2004 municipality boundaries 

Baseline 1,630; 
1,619; 
1,573 

5,939; 
5,902; 
5,712 

Protected area 
(km2) 

Total area classified as strictly protected-, sustainable use 
protected areas and indigenous. area at baseline year 2004 

Baseline 300 
 

2407 

State 26 levels (Federal District excluded because urban)   

Biome 13 levels (6 pure biome and 7 transition zones)   

Dependent variables and their baseline variable values are based on model sample sizes ranging 3,808-4,976 municipalities. 

Treatment and confounding variable values are based on the largest 2000-2010 and 2004-2013 model sample (n = 4,976 and 
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4,940, respectively). Confounding variables with single values are based on the largest model sample in which the variable is 

used.  
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Table S3. Quality dataset robustness check model impacts of Zero Hunger (ZH), Bolsa Familia (BF) and PRONAF per 
capita investment  
 
 

ZH BF PRONAF 

Outcome Coef±S.E. P Int. R2 Coef±S.E. P Int. R2 Coef±S.E. P Int. R2 

Kcalories (per capita) 0.01±0.02 0.629 2E-08 0.94 0.02±0.02 0.212 1E-20 0.93 0.02±0.01 0.148 7E-12 0.94 

Protein (per capita) 0.08±0.02 3.E-07 2E-42 0.96 0.09±0.02 3.E-05 1E-17 0.96 0.04±0.01 0.002 9E-103 0.96 

Multi-dim. poverty (census) -0.01±0.01 0.022 2.E-04 0.74 0.04±0.01 8.E-07 3E-08 0.77 -0.02±0.005 4.E-05 3E-10 0.76 

Multi-dim. poverty (SIAB) 0.02±0.01 0.116 
 

0.61 0.03±0.03 0.202 5.E-04 0.61 -0.02±0.02 0.230 
 

0.60 

Child Malnutrition (SIAB) 0.04±0.04 0.334 
 

n/a 0.15±0.07 0.025 
 

n/a -0.01±0.03 0.683 
 

n/a 

Infant Mortality (census) 0.01±0.24 0.983 
 

0.13 0.03±0.27 0.898 
 

0.14 0.01±0.22 0.962 
 

0.17 

Infant Mortality (SIAB) 0.07±0.06 0.241 
 

n/a 0.11±0.07 0.147 
 

n/a -0.04±0.05 0.439 
 

n/a 

Natural Veg. (km2) -0.01±0.004 0.005 9.E-05 0.99 -0.03±0.01 0.007 0.040 0.99 -0.01±0.004 0.169 3.E-05 0.99 

Model coefficients are reported ± one standard error. Interaction terms (Int.) show p-values for the interactions between investment and state in all models, 
except for the natural vegetation model in which the interaction is with biome type. When interaction terms are not significant we report results from models 
that only contain main effects. State and biome have been encoded with deviation (effects) coding, thus for models with an interaction the main effects 
expressed here represent the average effect of investment across Brazil. Daily per capita kilocalorie and protein production, multi-dimensional poverty 
and area of natural vegetation are modelled using robust OLS, whilst infant mortality (census) is modelled using a Negative Binomial model, and infant 
mortality- and child malnutrition (SIAB) are modelled with a Quasi-Poisson model. Model r2 for infant mortality (census) is calculated using McFaddens 
pseudo-R2 and is thus not comparable to those from OLS models. No pseudo-r2 is available for Quasi-Poisson models. All models have been adjusted to 
achieve covariate balance using the CBGPS method (50). 
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Table S4. Robustness check model of the impact of Bolsa Familia (BF) per capita (pc) investment on 
education 
 

 BF 

Outcome Coef±S.E. P Interaction term R2 

Education (census) 0.08±0.07 0.263 2.E-10 0.34 

Education (SIAB) -1.11±1.12 0.320 2.E-08 0.11 

Due to a heavy negative skew in the Education (census) dependent variable, an Ordered Quantile (ORQ) normalization 
transformation was carried out. This transformation was identified as the best transformation (out of 7 standard transformations) 
using R’s package “bestNormalize”. Model coefficients are reported ± one standard error. Interaction terms  report p-value for the 
interaction term between investment and state. In the Education (census) model 7 states showed a significant effect of BF 
investment on school attendance (Para, Rondonia, Alagoas and Bahia with significant increases, and Goias, Mato Grosso do 
Sul, and Parana with significant reductions). In the Education (SIAB) model 4 states showed a significant effect of BF investment 
on school attendance (Parana and Santa Catarina with significant increases, and Bahia and Piaui with significant reductions) 
State has been encoded with deviation (effects) coding, thus for models with an interaction the main effects expressed here 
represent the average effect of investment across Brazil. Both education models are modelled using covariate balance (CBGPS) 
adjusted robust OLS models. 

 
Table S5. Nutrient values used to convert production of (a) kg and (b) number of animals to 
corresponding quantities in kilocalories and grams of protein 
 

Agro-Livestock    products Kcal 
FBA/USP 
estimate 

Kcal 
USDA 

estimate 

Kcal value 

used 

Protein 
FBA/USP 
estimate 

Protein 
USDA 
estimate 

Protein value 
used 

(a) 

Sugarcane  -  3,750 3,750 -  0 0.00 

Soyabeans  3,630 4,460 4,045 405 360 382.50 

Maize -  3,650 3,650 -  90 90.00 

Rice 3,400 3,650 3,525 78.1 70 74.05 

Cassava 1,330 1,600 1,465 13 10 11.50 

Milk 650 600 625 29.7 30 29.85 

(b) Kg meat/ 
animal 

      

Cattle  134.5a 1,388 2,340 1,864 200.7 190 195.35 

Buffalo 218.5b -  1,090 1,090 -  210  210.00 

Chicken 1.7c 2,090 -  2,090 171 -  171.00 

Sheep 6.5d 1,090 -  1,090 207.4 -  207.40 

Goat 5.8e -  1,090 1,090 -  210 210.00 

Pig 45.4f 1,720 1,850 1,788 198.7 195 196.85 

Twelve main agro-livestock products in Brazil are converted from (a) kg and (b) number of animals to corresponding quantities 
in kilocalories and grams of protein. For (b) each livestock type is first assigned an average weight of meat, and based on 
appropriate quantities in a Brazilian context converted from number of animals to kg, sources used being a(67), b(68), c(69), 
d(70), e(71), and f(72). Nutrient values are taken from the Brasilfoods (7) and USDA database (8), the average of the two used 
when possible, expressed here as kilocalories and grams of protein per kg 
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Table S6. Data included to create the multi-dimensional poverty indices Multi-dimensional poverty 
(census) and Multi-dimensional poverty (SIAB).  

 Multi-dimensional poverty (census) Multi-dimensional poverty(SIAB) 

Health 

Infant mortality  
(infant deaths per 1,000 births) 

Infant mortality 
(infant deaths per 1,000 births) 

Life expectancy deprivation  
(deviation from expected living age w/global min 
and max years): 1-((LifeExpectancy-20)/(85-20)) 

Child malnutrition 
(underweight per 100 

weighted) 

Underweight at birth 
(per 100 weighed) 

Underweight age 1-2 
(per 100 weighed) 

Education 
No school attendance  

(% 7-14 year olds that do not attend primary 
school) 

No school attendance  
(% 7-14 year olds that do not attend primary school) 

Living 
standards 

No electricity  
(% people  without access to electricity) 

No electricity 
(% people* without access to electricity) 

Unsafe water  
(% people without piped water) 

Unsafe water 
(% people* without piped water) 

Inadequate sanitation  
(% people* without public system or septic tank) 

Inadequate sanitation 
(% people* without public system or tank) 

No assets 
(% people without 

access to:) 

TV  

Inadequate walls 
(% people*living in houses with inadequate walls such 

as cardboard, plastic and straw) 

Radio 

Telephone 

Car 

Fridge/freezer 

Washing machine 

Data included to create multi-dimensional poverty (census) is based on the Brazilian demographic census (73) while multi-
dimensional poverty (SIAB) on the national primary information system (SIAB) (12). All variables besides Life expectancy 
deprivation is expressed as the proportion of people. *indicates an original measure of %-households has been converted to %-
people based on average people per household per municipality published by IBGE. Each variable is negatively loaded and 
scaled between 0-1, and subsequently combined through geometric means to make higher order compound variables, the final 
indices ranging 0-1 where 1 equals complete multi-dimensional poverty 

 

 
Table S7. Vegetation cover categories from MapBiomas used to create an overall natural vegetation 
classification 
 

MapBiomas categories New categories 

Forest, Natural forest formations, Dense forest, Open forest, 
Mangrove forest, Flooded forest, Degraded forest, Secondary 

forest, Natural non-forest formations, Non-forest natural wetlands, 
Grasslands*, and Other non-forest natural formations 

 
 

Natural vegetation 

Planted forest, Agro-livestock use, Pasture, Pasture in natural 
grasslands, Other pasture, Agriculture, Annual crops, Semi-
perennial crops (Sugarcane), Crop mosaics, Agriculture or 
pasture, Non-vegetative areas, Beaches and dunes, Urban 

infrastructure, Other non-vegetative areas, and Water bodies 

 
 
 

Other 

Non observed Non observed 

Vegetation cover categories are taken from MapBiomas v2(16), and the overall natural vegetation classification created used to 
analyse the impact of Zero Hunger, Bolsa Familia and PRONAF investment on municipal area under natural vegetation. *Natural 
grasslands, i.e. not including pasture 
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Table S8. Robustness check validating the accuracy of natural vegetation cover estimates per biome 
from MapBiomas (MB), using alternative data sources.   

Biome 
Alternative 
land use 

 
 

Resolution 
Year 

% cover of 
natural 

vegetation 
from Map 
Biomass 

% cover of 
natural 

vegetation 
from 

alternative 
data source 

Spearman's rho 
correlation coefficients 

comparing Map Biomass 
and alternative data 

sources’ estimates of 
natural vegetation cover 

per municipality  

N 

Amazon Terra Class 30 m 2014 83 86 0.992 399 
Cerrado Terra Class 1:250,000 2013 56 55 0.977 809 
Cerrado PMDBBS 1:250,000 2002 58 57 0.969 833 
Caatinga PMDBBS 1:250,000 2002 64 54 0.899 898 
Atlantic 
Forest 

SOS Mata 
Atlantica 

1:250,000 
2013 28 14 0.865 2448 

The accuracy of the 30 m resolution fine-scale natural vegetation maps of MapBiomas v2(16) is validated by considering the 
extent of natural vegetation categorized by MapBiomas (MB) compared to alternative vegetation maps within four main Brazilian 
biomes (Amazon, Cerrado, Caatinga and Atlantic Forest). TerraClass has a minimum detected area of approximately 6.25 ha 
(74).  First, we compare estimates of natural vegetation cover (%) as a proportion of total biome area using data from all 
municipalities. The discrepancy in natural vegetation cover for the Atlantic Forest is most likely caused by the lower resolution of 
the alternative map (SOS Mata Atlantica) and subsequent inability to pick up on the many small and fragmented natural vegetation 
areas typical for this biome. Second, Spearman’s rho correlations are calculated for  the two estimates of natural vegetation cover 
(km2) per municipality, N refers to the number of municipalities included in these analyses. Pre-processed Terra Class data for 
the Amazon were not available so we only use municipalities for which both data sources had extremely similar estimates of 
municipality size (<1% difference).  

 

Table S9. Correlation coefficients and associated P values for relationships between ZH-, BF and 
PRONAF investment and electoral patterns in Brazil 

  
ZH BF PRONAF 

Time frame Party Spearman’s rho P Spearman’s rho P Spearman’s rho P 

V1: Average municipal vote share (%) in presidential elections for the winning candidate 

2000-2010 
 

-0.076 8E-08 0.648 0E+00 -0.342 2E-136 

2004-2013 
 

0.064 6E-06 0.712 0E+00 -0.285 7E-93 

V2: Sum of years the municipality is governed by the same party as the current president 

2000-2010 
 

-0.051 0.0003 -0.046 0.001 -0.026 0.068 

2004-2013 
 

-0.004 0.775 -0.041 0.004 0.003 0.861 

V3: Sum of years the municipality is governed by a main party in Brazil 

2000-2010 PMDB 0.097 9E-12 -0.113 2E-15 0.122 8E-18 

2004-2013 PMDB 0.091 2E-10 -0.111 6E-15 0.117 2E-16 

2000-2010 PSDB -0.147 2E-25 -0.059 3E-05 -0.089 4E-10 

2004-2013 PSDB -0.154 2E-27 -0.088 7E-10 -0.077 8E-08 

2000-2010 PFL -0.001 0.953 0.149 4E-26 -0.057 0.0001 

2004-2013 PFL 0.009 0.517 0.150 4E-26 -0.057 0.0001 

2000-2010 PTB -0.028 0.053 0.057 0.0001 -0.038 0.007 

2004-2013 PTB -0.021 0.144 0.056 0.0001 -0.034 0.017 

2000-2010 PP 0.120 3E-17 -0.101 1E-12 0.121 1E-17 

2004-2013 PP 0.117 2E-16 -0.109 2E-14 0.145 1E-24 

2000-2010 PT -0.009 0.528 -0.046 0.001 0.017 0.219 

2004-2013 PT -0.004 0.775 -0.041 0.004 0.003 0.861 

Data on electoral patterns from the presidential elections (V1) and municipal elections (V2 and V3) for the time frames of the 

analysis (2000-2010 and 2004-2013) are taken from the Superior Electoral Court data repository (30).The contribution of each 
year to these three metrics is weighted by the proportion of investment that relates to that year, i.e. electoral trends in years 

when investment in ZH is higher have greater weight. Spearman’s Rho correlations between the electoral variables and ZH-, 

BF- and PRONAF investment variables show clear signs of a relationship with V1 (highlighted in bold), but no relationship with 

V2 and V3, thus V1 is selected as a control variable. 
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Table S10. Criteria, thresholds and rational used to exclude municipalities (M) from specific models to reduce bias in model estimates.  
 

  Criteria Threshold Rational for exclusion Models affected M excluded  

C
o

re
 m

o
d

e
ls

 

1.1 Inconsistent municipality borders Merging municipalities for time periods 
2004-2013 and 2000-2010 

Spatial inconsistency All 4 – 45 
 

1.2 Inconsistent municipality borders Border change 2000–2004 Spatial inconsistency Kilocalorie, Protein and 
Natural vegetation 

128 

2 Urban municipalities > 150 inhabitants/km² Not target municipalities All 407 – 438 
3 Unidentifiable municipality IDs Mis-spelled names Erroneous reporting All 3 – 20 
4 Non-observed municipal area due to cloud cover > 50% Spatial inconsistency Natural vegetation 17 
5 Missing information Missing predictor variable information Predictor variable inconsistency All 55 – 1307 

R
o

b
u

s
tn

e
s
s
  
m

o
d

e
ls

 

6 Municipality size (km2) > 10000 Sampling bias All 98 – 130 
 
 
 
 
 
7 

Families registered < 100 Bias due to small sample size  
 
 
 
Child malnutrition 
(SIAB), 
Infant mortality (SIAB) , 
Multi-dimensional 
poverty (SIAB) 

 
 
 
 
 
 
566 – 1847 
 

People registered < 350 Bias due to small sample size 

People registered within in all age groups 0 Bias due to small sample size 

Families attended to each month 0 Temporal bias 

Monthly medical visits to people with pregnancy, 

hypertension, diabetes, tuberculosis and leprosy 

< 10% Temporal bias 

Deviation between sum of people of all ages and 

total people registered 

> 10% Erroneous reporting 

Infant mortality rate (deaths per 1,000 born) > 1,000 Erroneous reporting 

Average people per family < 2 or > 8 Erroneous reporting 

Sex ratio < 0.5 or > 2 Erroneous reporting 

Average monthly visits per family < 0.2 or > 4 Erroneous reporting 

8 Non-observed municipal area due to cloud cover > 5% Spatial inconsistency Natural vegetation 323 

Number of municipalities excluded per criteria vary across model sample sizes because they rely on data for different time periods, i.e. 2000-2010 and 2004-2013, and have slight variations in 
model covariates. The reported number of municipalities excluded are based on a sequential exclusion. According to criteria 1.1, municipalities which merged to form single municipalities within a 
time period were excluded. The additional exclusions in criteria 1.2 for the kilocalorie, protein and natural vegetation models occur because these models include a control variable adjusted to 
municipality borders for year 2000 (the census derived multi-dimensional poverty index), while all other data is adjusted to 2004 municipality borders. Thus all municipalities with border 
discrepancies between 2000 and 2004 had to be excluded. Criteria seven is based on formal suggestions for SIAB data (63). 
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Table S11. Two-sided Moran’s I test on ZH-, BF- and PRONAF model residuals show no signs of spatial autocorrelation. 
 

 
Zero Hunger BF PRONAF 

 
Border Distance Border Distance Border Distance 

Model Moran’s I P Moran’s I P Moran’s I P Moran’s I P Moran’s I P Moran’s I P 

CBGPS residuals 

Kcalories (per capita) -0.0177 0.051 -0.0057 0.069 -0.0002 0.997 0.0028 0.316 -0.0097 0.289 -0.0078 0.012 

Protein (per capita) -0.0160 0.078 -0.0039 0.221 -0.0002 0.999 0.0033 0.251 -0.0065 0.481 -0.0056 0.076 

Multi-dim. povertyCensus -0.0134 0.135 -0.0023 0.496 -0.0223 0.013 -0.0031 0.340 -0.0088 0.331 -0.0016 0.639 

Multi-dim. povertySIAB 0.0313 0.006 0.0007 0.718 0.0063 0.571 -0.0007 0.861 0.0112 0.323 -0.0021 0.473 

Child MalnutritionSIAB -0.0095 0.439 -0.0048 0.095 -0.0107 0.377 -0.0035 0.236 0.0073 0.523 -0.0061 0.032 

Infant MortalityCensus 0.0006 0.928 -0.0022 0.520 -0.0188 0.047 -0.0083 0.008 -0.0168 0.074 -0.0047 0.158 

Infant MortalitySIAB -0.0167 0.122 -0.0108 0.001 -0.0272 0.011 -0.0103 0.001 0.0037 0.710 -0.0065 0.042 

Natural Veg. (km2) 0.0151 0.088 -0.0005 0.911 -0.0036 0.708 0.0042 0.146 -0.0053 0.570 -0.0049 0.125 

Outcome residuals 

Kcalories (per capita) 0.0210 0.018 0.0070 0.018 0.0180 0.042 0.0064 0.029 0.0194 0.029 0.0067 0.024 

Protein (per capita) -0.0038 0.691 -0.0020 0.553 -0.0069 0.455 -0.0035 0.284 -0.0047 0.615 -0.0002 0.998 

Multi-dim. povertyCensus -0.0129 0.153 -0.0016 0.648 -0.0108 0.232 -0.0006 0.887 -0.0079 0.383 -0.0007 0.856 

Multi-dim. povertySIAB 0.0009 0.920 -0.0009 0.803 0.0015 0.880 0.0005 0.784 0.0004 0.953 -0.0017 0.579 

Child MalnutritionSIAB -0.0070 0.573 -0.0009 0.831 -0.0070 0.538 0.0061 0.010 -0.0034 0.795 -0.0006 0.906 

Infant MortalityCensus -0.0110 0.241 -0.0038 0.250 -0.0005 0.979 -0.0061 0.052 0.0149 0.104 0.0010 0.699 

Infant MortalitySIAB -0.0148 0.172 -0.0036 0.264 -0.0006 0.971 0.0008 0.729 0.0224 0.029 0.0015 0.557 

Natural Veg. (km2) 0.0071 0.415 0.0092 0.002 0.0057 0.513 0.0073 0.013 0.0054 0.534 0.0071 0.016 

Two-sides Moran’s I tests were run on model residuals from the covariate balancing models where CBGPS weights were created (CBGPS residuals) and on residuals from the subsequent CBGPS 

weighted regression models (Outcome residuals). The Moran’s I tests were run twice and based on distinct spatial neighbourhood matrices, i) a neighbourhood matrix based on touching 
municipality borders (labelled Border in the table), and ii) a neighbourhood matrix defined as the inverse distance between each municipality centroid, which was capped at 0.75 of the maximum 

distance (labelled Distance in the table). No signs of spatial autocorrelation were found, as even significant Moran’s I values (P < 0.05, highlighted in bold) have Moran’s I values very close to 0 
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Table S12. A semi-formal test for endogeneity(66) show no signs of endogeneity between the error 
term and ZH-, BF and PRONAF investment variables 
 

 
ZH BF PRONAF 

Model Spearman’s 
rho 

Spearman’s 
rho 

Spearman’s 
rho 

Kcalories (per capita) 0.005 -0.024 0.008 

Protein (per capita) 0.009 -0.013 0.010 

Multi-dim. poverty (census) -0.003 0.003 -0.001 

Multi-dim. poverty (SIAB) 0.002 0.001 0.002 

Child Malnutrition (SIAB) -0.014 -0.070 -0.066 

Infant Mortality (census) -0.012 -0.080 0.049 

Infant Mortality (SIAB) -0.049 -0.032 -0.085 

Natural Veg. (km2) -0.006 -0.032 -0.006 

The semi-formal test for endogeneity is based on Spearman’s Rho correlations between the error term (model residuals) and 
the ZH-, BF- and PRONAF investment variables. All Spearman’s rho values are very low and show no signs of endogeneity 
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Supplementary Graphs 

 

 
 

Fig. S1. Total investment per capita in Brazilian reals (R$) from 2004-2013 for the main Zero Hunger 
sub-programs a Bolsa Familia, b PNAE, c PRONAF and d PAA, available at 

www.dados.gov.br/www.mds.gov.br, showing great spatial variation in investment within and 
across programs. Grey areas indicate municipalities not included. Dark borders show administrative 
region borders 
 

 

http://www.dados.gov.br/
http://www.mds.gov.br/
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Fig. S2. Relative impact of Zero Hunger, Bolsa Familia and PRONAF investment given a spatially 
uniform investment level (column 1-3) on daily per capita kilocalorie production, daily per capita 
protein production, multi-dimensional poverty in the entire population (Census), multi-dimensional 
poverty in the poorer sectors of society (SIAB), child malnutrition in the poorer sectors of society 
(SIAB) and natural vegetation cover (km2) (row 1-6). Relative impact is defined as the relative change 
between outcome given a spatially uniform negligible (1st percentile value) program investment level 
and a spatially uniform median program investment level investment level. Relative impact calculations 
are based on robust multivariable regression models of a covariate-balanced sample (Table 1) that take 
confounding factors into account including interactions between investment and state, or (in the natural 
vegetation cover model) investment and biome. States and biomes with significantly different outcomes 
to the overall effect are indicated by thick black borders; thin black border show region borders (row 1-
5) and ecological biome borders (row 6). We use a normative colour scheme, with blue indicating 
beneficial and red non-beneficial impacts, grey areas signify municipalities not included in the analysis 
because they were urban, or has insufficient data or fall within the model reference state/biome for 
which no model statistics are available
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Fig. S3. High consistency between multi-dimensional poverty (census) (MPI) overall and its three 
dimensions Health, Education and Living Standard for 2000 and 2010 (top 3 rows), and the Brazilian 
Municipal Human Development Index (MHDI) (when negatively loaded) and its three dimensions 
Longevity, Education and Income (bottom 3 rows).  The largest discrepancies are found in Education 
as MPI only considers education for children age 7-14 and the MHDI the whole population 
(Spearmans’s rho for education is 0.65 and 0.39, for 2000 and 2010, respectively). The other dimensions 
show great similarities (r = 0.78-0.99). Overall the MPI and MHDI correlate well with r = 0.9 and 0.84 
for 2000 and 2010, respectively   
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Fig. S4. Annual investments in the four main Zero Hunger (ZH) sub-programs Bolsa Familia (BF), 
PRONAF, PNAE and PAA available at www.dados.gov.br/www.mds.gov.br, showing a gradual 
increase in annual investments and predominance of BF and PRONAF to a summed ZH investment. 
Horizontal lines indicate investment values included in the respective 2000-2010 and 2004-2013 
analyses. All values are expressed in billion Reals (R$) and adjusted for inflation with base year 2013 

 
 

 
 
Fig. S5. Great covariate balance achieved following the Covariate balancing generalized propensity 
score (CBGPS) method from Fong et al. (50). Orange circles shows average absolute Pearson 
correlation between the Zero Hunger, Bolsa Familia and PRONAF investment variable and model 
covariates (predictor variables) for all models when CBGPS weights are included in the model. Blue 
circles are the unweighted average correlations. Lines represent error bars. 

http://www.dados.gov.br/
http://www.mds.gov.br/
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