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Abstract: The awareness of the need for robust impact evaluations in conservation is growing and statistical
matching techniques are increasingly being used to assess the impacts of conservation interventions. Used ap-
propriately matching approaches are powerful tools, but they also pose potential pitfalls. We outlined important
considerations and best practice when using matching in conservation science. We identified 3 steps in a matching
analysis. First, develop a clear theory of change to inform selection of treatment and controls and that accounts
for real-world complexities and potential spillover effects. Second, select the appropriate covariates and matching
approach. Third, assess the quality of the matching by carrying out a series of checks. The second and third steps
can be repeated and should be finalized before outcomes are explored. Future conservation impact evaluations
could be improved by increased planning of evaluations alongside the intervention, better integration of quali-
tative methods, considering spillover effects at larger spatial scales, and more publication of preanalysis plans.
Implementing these improvements will require more serious engagement of conservation scientists, practitioners,
and funders to mainstream robust impact evaluations into conservation. We hope this article will improve the
quality of evaluations and help direct future research to continue to improve the approaches on offer.

Keywords: causal inference, conservation effectiveness, counterfactual, impact evaluation, spillover, spatial
autocorrelation

Emparejamiento Estad́ıstico para la Ciencia de la Conservación

Resumen: Hay más conciencia sobre la necesidad de evaluaciones de impacto más rigurosas y las técnicas
de emparejamiento estad́ıstico se están usan con más frecuencia para evaluar los impactos de intervenciones de
conservación. Las técnicas de emparejamiento pueden ser herramientas poderosas si son utilizadas correctamente,
pero también pueden llevar a conclusiones erróneas. En este art́ıculo describimos consideraciones importantes
para realizar estudios de conservación que utilizan técnicas de emparejamiento estad́ıstico. Identificamos tres pasos
dentro de un análisis de emparejamiento. Primero, es importante desarrollar una teoŕıa del cambio que considere
las complejidades del mundo real y las posibles consecuencias indirectas para poder seleccionar unidades de
tratamiento y controles. Segundo, es clave seleccionar las covarianzas y la estrategia de emparejamiento apropiadas.
Tercero, evaluar la calidad del emparejamiento a través de una serie de revisiones. El segundo y el tercer paso
pueden ser repetidos y deben concluirse antes de que se exploren los resultados. Evaluaciones de impacto de
intervenciones de conservación podŕıan mejorarse con una mejor planeación de las evaluaciones junto con la
intervención, una mejor integración de los métodos cualitativos, mejor consideración de consecuencias indirectas
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a grandes escalas espaciales y un incremento en la publicación de planes pre-anaĺıticos. La implementación de estas
mejoras requerirá de un compromiso más serio por parte de cient́ıficos de la conservación, y de practicantes y
financiadores. Esperamos que este art́ıculo mejore la calidad de evaluaciones y ayude a guiar futuras investigaciones
e intervenciones de conservación.

Palabras Clave: autocorrelación espacial, consecuencias indirectas, efectividad de la conservación, evaluación
de impacto, hipótesis de contraste, inferencia causal
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Introduction

There have been numerous calls for conservation science
to provide a stronger evidence base for policy and prac-
tice (Pullin & Knight 2001; Sutherland et al. 2004; Baylis
et al. 2016). Rigorous impact assessments of conservation
interventions is vital to prevent wasting conservation re-
sources (Ferraro & Pattanayak 2006) and tackling rapid
biodiversity loss. Although the importance of establish-
ing counterfactuals (what would have happened in the
absence of an intervention) to generate more precise and
less biased estimates of conservation impacts is increas-
ingly recognized (Baylis et al. 2016), robust impact eval-
uations remain limited in number and scope (Schleicher
2018).

It is seldom feasible, or even desirable, to randomly
implement conservation interventions for ethical, logis-
tical, and political reasons. Experimental evaluations are
therefore likely to remain rare (Baylis et al. 2016; Pynegar
et al. 2018; Wiik et al. 2019). However, methodological
advances to improve causal inference from nonexperi-
mental data have helped to better attribute conservation
impacts (Ferraro & Hanauer 2014a). These methods em-
ulate experiments by identifying treatment and control
groups with similar observed and unobserved character-
istics (Rosenbaum & Rubin 1983; Stuart 2010). Among
the range of nonexperimental approaches available for
impact evaluations, each with their strengths and weak-
nesses (Table 1), matching approaches are playing an
increasingly important role in conservation science (e.g.,
Andam et al. 2008; Nelson & Chomitz 2011; Naidoo et al.
2019).

Matching comprises a suite of statistical techniques
aiming to improve causal inference of subsequent
analyses. They do so by identifying control units that
are closely matched to treatment units according to

predefined measurable characteristics (covariates) and a
measure of similarity (Gelman & Hill 2007; Stuart 2010).
Selecting comparable units of analysis (e.g., sites, indi-
viduals, households or communities) is important when
conservation interventions are not assigned randomly.
This is because units exposed to the intervention (treat-
ment units), and those not exposed (control units) can
differ in characteristics that influence the allocation of
the treatment (i.e., where an intervention occurs, or who
receives it) and the outcome of interest (e.g., species pop-
ulation trends, deforestation rates, changes in poverty
levels). These characteristics are commonly referred to
as confounding factors. For example, habitat conditions
before an intervention can influence both the likelihood
of the intervention being carried out in a specific
location and habitat condition after the intervention’s
implementation.

Matching has 2 main applications in impact evaluation.
First, where researchers seek to evaluate the impact of an
intervention post hoc, matching can reduce differences
between treatment and control units, and help isolate
intervention effects. For example, when examining pro-
tected area (PA) effects on deforestation, distance from
population centers (remoteness) is a likely confounder:
remote sites tend to be more likely designated as pro-
tected and less prone to deforestation because they are
harder to reach (Joppa & Pfaff 2009). Second, matching
can be used to inform study design and data collection
prior to the implementation of an intervention. For exam-
ple, to evaluate how a planned conservation intervention
affects local communities, matching can be used to iden-
tify appropriate control and treatment communities to
monitor effects before and after the intervention’s imple-
mentation (Clements et al. 2014).

Matching is a powerful statistical tool, but not a magic
wand. The strengths and weaknesses of matching relative
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540 Matching in Impact Evaluation

Table 1. Pros and cons of commonly used nonexperimental, quantitative impact evaluation approaches in conservation.

Method When used Pros Cons

Matching∗ baseline information on
confounding factors (those
affecting both selection of
treatment and outcomes)
available for both treatment and
control units (e.g., Andam et al.
2008)

relatively few data
requirements; lends itself to
integration with other
approaches when used as a
data preprocessing step

assumes balance in observable
covariates reflects balance in
unobserved covariates (i.e.,
there are no unobserved
confounders)

Before-after-
control-impact
(difference-in-
difference)

data before and after treatment
implementation can be
collected from replicated
treatment and control units
(e.g., Pynegar et al. 2018)

controls for time invariant
variables and variables that
change over time but affect
both treatment and control
groups equally

assumes a parallel trend in
outcome between treatment
and controls (confounding
factors are those affecting
treatment assignment and
changes in outcome over
time)

Regression
discontinuity

selection of the intervention
follows a sharp assignment rule
(e.g., participants above a
certain threshold are selected
for treatment [Alix-Garcia et al.
2018])

strong causal inference outcomes calculated only for
units close to the cutoff (i.e.,
data from only a small
subgroup of units are used)

Instrumental
variables

treatment assignment correlated
with error term (endogeneity);
a third variable (the instrument)
correlated with treatment but
uncorrelated with the error
term can be used instead of the
treatment (e.g., Liscow 2013)

helps overcome endogeneity suitable instruments can be
hard to find

Synthetic control intervention has only occurred in
a single unit of observation;
information from a potential
pool of controls can be
synthesized to generate a single
artificial counterfactual (e.g.,
Sills et al. 2015)

can be conducted when large
numbers of treatment units
are not available

credibility relies on a good
prior to implementation fit
for outcome of interest
between treated unit and
synthetic control

∗
Matching can be used to identify control units for comparison with treatment units as a method for impact evaluation, but is often used to

improve the rigor of other approaches. For example, matching can be used to select control units for difference-in-differences analyses.

to alternative methods should be considered carefully,
and its use optimized to maximize the benefits. Given
the rapid rise in the use of matching approaches in con-
servation science, there is an urgent need for reviewing
best practices and bringing together the diverse technical
literature, mostly from economics and statistical journals
(Imbens & Wooldridge 2009; Abadie & Cattaneo 2018),
for a conservation science audience. The few existing
related articles targeted at a conservation audience have
focused on the conceptual underpinnings of impact eval-
uations (Ferraro & Hanauer 2014a; Baylis et al. 2016)
without providing specific methodological insights. We
addressed this gap by providing an overview of matching
and key methodological considerations for the conserva-
tion science community. We did so by drawing on the
wider literature and our own collective experience with
matching in conservation impact evaluations. We focused
on important considerations when using matching, out-
lined best practices, and highlighted key methodological
issues that deserve further attention and development.

Important Considerations When Using Matching
in Conservation Impact Evaluation

Three Key Steps

As with any statistical analysis, matching studies re-
quire careful design (Stuart 2010; Ferraro & Hanauer
2014a). We identify 3 main steps for a matching analysis
(Fig. 1). The first step involves identifying units exposed
to the treatment and those not. The second step con-
sists of selecting appropriate covariates and the specific
matching approach. The third step involves running the
matching analysis and assessing the quality of the match
(Table 2). Steps 2 and 3 should be repeated iteratively
until the matching has been optimized. Only then should
the matched data be used for further analysis. Doing so
is important in post hoc analyses to avoid selecting a
matching approach that produces a desired result (Rubin
2007). We elaborate on key considerations involved in
each step (Fig. 1) below.

Conservation Biology
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Figure 1. Visual representation of the suggested workflow, including key steps of a matching analysis, potential
checks (see Table 2), and visual diagnostics of the matching process.
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542 Matching in Impact Evaluation

Table 2. Example diagnostics for the checks (suggested in Fig. 1) in a matching analysis to assess the quality of the matching and robustness of the
postmatching analysis.

Example diagnostic Explanation and purpose Example visualizations

Check 1: balance mean values and
standardized mean
differences before and
after matching

test whether differences among treatment
and control populations are meaningful.
Compare covariate means and deviations
for treatment and control units (before
and after matching) to assess whether
matching has improved balance
(similarity between treatment and
control units). After matching, mean
covariate values should be similar and the
standardized mean difference should
ideally be close to 0. Standardized mean
values of <0.25 are often deemed
acceptable, but thresholds of 0.1 are
more effective at reducing bias (Stuart
2010; Stuart et al. 2013).

love plots and propensity score
distributions before and after
matching (Fig. 1) (Oldekop
et al. 2019)

Check 1: spatial
autocorrelation

Moran’s I and spatial
distribution of
postmatching analysis
residuals

Moran’s I values of the postmatching
analysis should not be significantly
different from 0 to demonstrate low
levels of spatial autocorrelation. Plotting
the spatial distribution of postmatching
analysis residuals can help visualize
whether there is a spatial pattern to the
error term.

correlograms, semivariograms
and bubble plots (Fig. 1)
(Oldekop et al. 2019)

Check 3: hidden
bias

Rosenbaum bounds assess sensitivity of postmatching estimate
to presence of an unobserved
confounder. Rosenbaum bounds help
determine how much an unobserved
covariate would have to affect selection
for treatment to invalidate the
postmatching result (Rosenbaum 2007).

amplification plots
(Rosenbaum & Silber 2009)

Defining Treatment and Control Units (Step 1)

A NEED FOR A THEORY OF CHANGE TO MAKE EVALUATION POSSIBLE

The strength of the causal inference in observational
studies relies on a clear understanding of the mechanism
through which interventions influence outcomes of in-
terest. Rival explanations should be carefully considered
and, if possible, eliminated. Therefore, although impact
evaluation is an empirical exercise, it requires a strong
theory-based explanation and model of the causal path-
ways linking the intervention to the outcomes of interest
(Ferraro & Hanauer 2014b). This theoretical model is of-
ten referred to as a theory of change, causal chain, or logic
model. It comprises a theoretical understanding of how
a treatment interacts with the social-ecological system it
is embedded in (Qiu et al. 2018). This understanding is
required to successfully argue that a causal pathway runs
from the intervention to the outcome of interest (and not
vice versa). For example, the expansion of a PA network
might lead to the development of tourism infrastructure,
which might also result in poverty reduction (Ferraro &
Hanauer 2014b; den Braber et al. 2018). However, causal-
ity could run in the opposite direction: the development
of tourism infrastructure close to a PA might be the out-

come of reduced poverty as local communities invest
revenue.

ACCOUNTING FOR REAL-WORLD COMPLEXITY

Conservation interventions are seldom implemented in
simple settings where the impacts of 1 intervention
can be easily separated from others. A thorough un-
derstanding of the study area and context is essential
for identifying appropriate treatment and control units.
Typically, conservation interventions are implemented
in a landscape where potential treatment and control
units have been exposed to a range of different inter-
ventions. Spatially explicit data sets, identifying where
interventions have been implemented, are not uniformly
available across space: spatial information for some in-
terventions is much more readily available than for oth-
ers (Oldekop et al. 2019). Teasing apart the effects of
specific interventions can therefore be challenging. In the
Peruvian Amazon, for example, there are few land areas
with no formal or informal land-use restrictions and the
land-use designations often overlap (Fig. 2). This hinders
isolation of a particular treatment type (e.g., government-
controlled PAs or conservation concessions [Fig. 2])
and identification of appropriate control units (e.g.,

Conservation Biology
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Figure 2. Main land-use designations in the Peruvian Amazon in 2011 to 2013 (inset: Peru). Conserved areas
include government-controlled protected areas, conservation concessions, ecotourism concessions, concessions of
nontimber forest products, and territorial reserves.

unprotected land without land-use restrictions [Fig. 2]).
Indeed, the few matching studies that have accounted
for differences between land-use restrictions show that
the degree to which conservation interventions can be
considered effective is influenced by how control areas

are defined and selected (Gaveau et al. 2012; Schleicher
et al. 2017). Conservation impact assessments could be
improved by being more explicit about what the alterna-
tive land uses to the conservation interventions are and
why specific controls were selected.

Conservation Biology
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544 Matching in Impact Evaluation

CONSIDERING SPILLOVER IN THE SELECTION OF CONTROLS

A central assumption in matching studies is that the out-
come in 1 unit is not affected by the treatment in other
units (Rubin 1980). However, this assumption does not
always hold. There are many situations where outcomes
in treatment units may spillover and affect outcomes in
control units, either positively or negatively (Ewers & Ro-
drigues 2008; Baylis et al. 2016). For example, increased
fish population in no-take zones might spillover into ad-
jacent unprotected habitats, a case of positive spillover
that is part of the design of no-take marine PAs. This
would mask the positive impact of the intervention by
reducing the difference between treatment and potential
control units. In addition, fishing effort may be displaced
from a no-take zone into potential control areas (negative
spillover). One might thus wrongly conclude that the
intervention was successful, despite there being no over-
all reduction in fishing effort. In studies evaluating the
impact of PAs on deforestation, negative spillovers (also
called leakage) have usually been accounted for by ex-
cluding buffer zones around treatment areas, so that they
cannot be included as controls (Andam et al. 2008). How-
ever, leakage effects can vary across landscapes (Robalino
et al. 2017) and take place over larger geographical scales,
which have so far not been accounted for in matching
studies.

Selecting Covariates and Matching Approach (Step 2)

SELECTING MATCHING COVARIATES INFORMED BY THE THEORY OF CHANGE

A key assumption in nonexperimental studies is that se-
lection for treatment should be independent of potential
outcomes (known as the conditional ignorability assump-
tion [Rosenbaum & Rubin 1983]). If factors affecting
treatment assignment can be ignored, all confounding
factors should have been controlled for, and the study
should not suffer from hidden bias (i.e., not be very sen-
sitive to potential missing variables). Therefore, matching
analyses should ideally include all covariates likely to im-
pact both the selection to the treatment and the outcome
of interest (e.g., remoteness, as how remote a piece of
land will affect the likelihood of it being designated as PA
and also deforested). Researchers should thus carefully
consider which covariates are likely related to the out-
come. It is better to err on the side of caution by including
a covariate if the researcher is unsure of its likely role as
a confounder. However, it is important that no variables
likely to have been influenced by the outcome of interest
are used as part of the matching process (Stuart 2010),
so matching should only include variables predating the
intervention or time-invariant variables. Creating a table
of all possible confounding factors that shows how they
relate to the selection and outcome variables can help
organize this process (e.g., Schleicher et al. 2017). Run-

ning regression analyses prior to matching or plotting the
results of a principal component analysis (PCA) can also
inform covariate selection. A PCA can help visualize how
treatment and outcome relate to the selected covariates
by showing which combination of covariates explains
the outcomes observed in different units of analysis and
whether treatment and outcome have similar patterns
(Eklund et al. 2016).

CAREFUL SELECTION AND IMPLEMENTATION OF THE MATCHING APPROACH

There are various matching approaches, all with
strengths and weaknesses. It is difficult to assess a pri-
ori which method is the most appropriate for a given
study. Thus, testing a suite of different matching methods
to evaluate which produces the best balance (step 3 in
Fig. 1), instead of relying on any 1 method, can be useful
(e.g., Oldekop et al. 2018). Matching approaches include
Mahalanobis, propensity score, genetic, and full match-
ing (Stuart 2010; Iacus et al. 2012; Diamond & Sekhon
2013). Mahalanobis and propensity score matching are
particularly commonly used in conservation science, and
there is growing interest in the use of genetic matching.
Mahalanobis matching calculates how many standard de-
viations a unit is from the mean of other units (e.g.,
Rasolofoson et al. 2015). In contrast, propensity score
matching combines all covariates into a single distance
measure that estimates the probability of units receiving
the treatment (e.g., Carranza et al. 2013). Genetic match-
ing automates the iteration process (Diamond & Sekhon
2013) by optimizing balance diagnostics, rather than
mean standardized distance (e.g., Hanauer & Canavire-
Bacarreza 2015). Full matching uses a propensity score
to match multiple control units to treatment unit and vice
versa. It is particularly well suited when analyzing data
sets with similar number of treatment and control units
(e.g., Oldekop et al. 2019). The development and testing
of matching approaches remains an active research area
with some strongly arguing for 1 method over another
(King & Nielsen 2019).

Each of these methods can be configured in multi-
ple ways, requiring a series of additional decisions, in-
cluding about treatment to control ratio, replacement
of control units, weighting, setting calipers, the order
of selecting matches, and exact matching. First, for the
ratio of treatment to control units used during matching,
one must decide whether to apply 1-to-1 matching or to
match 1 treatment unit to several control units. Second,
regarding the replacement of control units, the choice
is whether control units can be used multiple times or
not (i.e., match with or without replacement). Third, the
relative importance of retaining as many treatment units
or control units in the analysis as possible, and hence the
relative weighting of different units, must be considered
carefully. Some approaches apply sampling weights to
give more importance to certain units and to adjust for
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unbalanced data sets. Fourth, one must decide whether
to set bounds (called calipers) on the degree of difference
between treatment and control units. Fifth, one can set
the order in which matches are selected (e.g., at random
or in a particular order) (Lunt 2014). Finally, one must
decide whether to retain only units with the exact same
covariate value (called exact matching) or not. Exact
matching using continuous covariates typically results in
many treatment units being excluded because no control
units with identical values are found. This can increase
bias because data is being systematically discarded. It is
thus better suited for categorical variables.

BASING INFERENCE ONLY ON THE REGION OF COMMON SUPPORT

In some cases, treatments may be so closely interlinked
with potential confounders that no good matches exist.
For example, if intact habitat remains only on mountain
tops and all mountain tops are protected, it would be
impossible to separate the contribution of location from
that of the intervention itself because there are no con-
trols with similar habitat available that are not protected
(Green et al. 2013). Matching therefore depends on a
substantial overlap in relevant covariates between units
exposed to the intervention and potential controls. This
overlap is known as the region of common support. An
assessment of common support early on in the matching
process can be a good filter to determine whether match-
ing will be useful. When using the propensity score, it
is simple to discard potential control units with scores
outside the range of the treatment group. Visual diag-
nostics, including the propensity score distribution, are a
simple and robust way of diagnosing any challenges with
common support (Lechner 2000; Caliendo & Kopeinig
2008) (Fig. 1 & Table 2). Where many potential control
units need to be discarded, it can be helpful to define the
discard rule based on 1 or 2 covariates rather than the
propensity score (Stuart 2010). If many treatment units
must be discarded because no appropriate control units
can be found, the research question being answered by
the analysis is likely to be different from the one asked
to begin with. This needs to be acknowledged. In some
cases, it will simply not be possible to use matching to
evaluate the impact of an intervention on an outcome of
interest, requiring the use of alternative quantitative or
qualitative methods (e.g., Green et al. 2013).

Assessing the Quality of the Matching (Step 3)

EXPLORING AND REPORTING QUALITY OF THE MATCH ACHIEVED

Matching provides no guarantee that biases have been
sufficiently addressed. It is therefore important to assess
the quality of the match and to report relevant statistics
(Fig. 1 & Table 2). In fact, an advantage of using match-
ing rather than standard regression is that it highlights

areas of the covariate distribution where there is not suf-
ficient common support between treatment and control
groups to allow effective inference without substantial
extrapolation (Gelman & Hill 2007). When assessing the
performance and appropriateness of a match, 3 key fea-
tures should be assessed and reported: first, how similar
are the treatments and controls after matching (covari-
ate balance); second, how similar is the prematch treat-
ment to the postmatch treatment (large dissimilarities
can potentially increase bias); and third, the number of
treatment units that were matched and discarded dur-
ing matching. In addition, when matching is done with
replacement, it is prudent to check the selection rate of
matched controls, to ensure that there is no oversampling
of specific controls. The best matching method will be
the one that keeps the postmatch treatment as similar
to the prematch treatment as possible, while ensuring
maximum similarity between postmatch treatment and
control units, and removing the least number of obser-
vations in the process. The proportion of covariates that
have met a user-specified threshold for balance and the
covariate with the highest degree of imbalance are ef-
fective indicators in diagnosing imbalance and potential
bias (Stuart et al. 2013). Standard tests and visualizations
that explore match quality have been widely published
in the statistical, economics, health, and political science
literatures (e.g., Rubin 2001; Harris & Horst 2016). It is
useful to combine both numeric and visual diagnostics
(examples in Table 2) (Caliendo & Kopeinig 2008; Stuart
2010; Harris & Horst 2016).

A central assumption underlying the use of matching
approaches is that any difference between treatment and
control populations remaining after matching are due to
treatment effects alone. Validating this assumption rests
on a robust theory of change and a careful selection of
covariates. However, even if all known sources of po-
tential bias have been controlled for, unknown mecha-
nisms might still confound either treatment or outcomes.
Checks to assess whether postmatching results are sen-
sitive to potential unmeasured confounders (e.g., Rosen-
baum bounds [Rosenbaum 2007]) allow one to evaluate
the amount of variation that an unmeasured confounder
would have to explain to invalidate the results.

CONSIDERING THE ROBUSTNESS OF MATCHING RESULTS TO SPATIAL

AUTOCORRELATION

Conservation interventions, and most data used to assess
their impacts, have a spatial component. A key assump-
tion of many statistical tests is that units of observation
are independent from each other (e.g., Haining 2003;
Dormann et al. 2007). Yet, this assumption is easily
violated when using spatial data: units of observation
that are closer together in space are often more similar
to each other than units of observation that are further
apart. Such spatial dependency, referred to as spatial
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autocorrelation (SAC), is often not discussed or explicitly
tested for in conservation matching studies, despite
being a well-recognized phenomenon (Legendre 1993;
Dormann et al. 2007). While it is unclear how matching
affects SAC, SAC can clearly affect impact estimations.
For example, studies modeling deforestation have shown
that the spatial coordinates of a data point are among
the top predictors of deforestation (Green et al. 2013;
Schleicher et al. 2017). Some matching studies in the
conservation literature have acknowledged the potential
resulting bias and attempted to account or test for any
potential effects linked to the spatial sampling framework
(e.g., Carranza et al. 2013; Schleicher et al. 2017; Oldekop
et al. 2019). We call for increased attention to SAC when
evaluating place-based interventions. Steps to test for SAC
include Moran’s I tests, semivariograms, correlograms,
and spatial plots of model residuals (Schleicher et al.
2017; Oldekop et al. 2019). These could be used to
test for SAC of postmatching analyses and treatment
assignment (e.g., by testing SAC of propensity score
models). The SAC could also be tested separately in the
treatment and control groups before and after matching.
If significant SAC remains after matching, it would be
a strong indication that it needs to be accounted for
in any postmatching regression, something that could
be confirmed through inspection of spatial patterns of
model residuals (Dormann et al. 2007; Zuur et al. 2009;
Oldekop et al. 2019).

Postmatching Analyses

Matching is often used as a data preprocessing step (Ho
et al. 2007). If matching perfectly reduces the difference
between treatment and control units to 0, or the residual
variation is close to random and uncorrelated with treat-
ment allocation and the outcome of interest, then the av-
erage treatment effect can be measured as the difference
in the outcome between treatment and control units.
However, in most instances matching reduces—but does
not eliminate—differences between treatment and con-
trol units. It is often followed by regression analyses to
control for any remaining differences between treatment
and control units (Imbens & Wooldridge 2009). Where
longitudinal panel data are available, matching can be
combined with a difference-in-difference research design
(e.g., Jones & Lewis 2015) (Table 1). Combining matching
with other statistical methods in this way tends to gener-
ate treatment-effect estimates that are more accurate and
robust than when using any 1 statistical approach alone
(Blackman 2013).

Moving Forward

The increasing use of matching approaches in conser-
vation science has great potential to rigorously inform

what works in conservation. However, while matching
approaches are a powerful tool that can improve causal
inference, they are not a silver bullet. We caution against
using matching approaches without a clear understand-
ing of their strengths and weaknesses. Looking to the
future, we highlight clear avenues for improving the use
of matching in conservation studies. This includes devel-
oping robust theories of change, incorporating real-world
complexities, careful selection of matching variables and
approaches, assessing the quality of matches achieved,
and accounting for SAC. Conservation impact evalua-
tion would benefit from increased evaluation planning
alongside conservation interventions, better integration
of qualitative approaches with quantitative matching-
based methods, further consideration of how spillover ef-
fects should be accounted for, and increased publication
of preanalysis plans. We explored each of these in turn.

Post hoc evaluations are often necessary in con-
servation because there is a pressing policy need to
explore the impacts of past interventions. However,
there are limits to what statistical analyses can do post
hoc to overcome problems in the underlying study
design of an impact evaluation (Ferraro & Hanauer
2014a). More integration of impact evaluations within
intervention implementations is needed to address and
account for biases in where interventions are located.
Occasionally, this may provide the opportunity for
experimental evaluation (Pynegar et al. 2018; Wiik
et al. 2019). More commonly, where this is not possible
or desirable, good practice should be to explore and
consider potential controls using matching from as
early as possible. Innovative funding is needed to allow
researchers to work alongside conservation practitioners
throughout their intervention to incorporate rigorous
impact evaluation from the start (Craigie et al. 2015).

Matching does not provide certainty about causal links
and on its own is unlikely to provide insights into the
mechanism by which an intervention had an impact. This
highlights the importance of making use of the diverse
set of evaluation approaches and data sources available.
This includes the important, but often overlooked, con-
tribution that qualitative data can make to impact evalu-
ation and counterfactual thinking. For example, incor-
porating qualitative data can provide depth in under-
standing, identify hypotheses, and help find potential
reasons underlying the effect of an intervention. Process
tracing, realist evaluation, assessment of exceptional re-
sponders, and contribution analyses are all suited for ex-
ploring the mechanisms by which an intervention led to
an outcome (Collier 2011; Lemire et al. 2012; Westhorp
2014; Meyfroidt 2016; Post & Geldmann 2018). Qualita-
tive comparative analysis can also be useful for exploring
what factors needed to be present to achieve successful
outcomes or how impacts vary among different groups
and circumstances (Korhonen-Kurki et al. 2014).

There are remarkably few explicit assessments of
the importance of spillover effects beyond intervention
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boundaries at different spatial scales (Pfaff & Robalino
2017). While impact evaluations on deforestation rates
commonly avoid selecting control pixels from a prede-
fined buffer area around an intervention, the size of the
buffer is seldom based on a clear justification. We know of
no matching studies that explicitly account for spillover
effects over larger spatial scales. This is despite the need
to account for spillovers to assess whether a net reduc-
tion in conservation pressure has taken place, instead of
simply displacing it elsewhere (Pfaff & Robalino 2012).
For example, stronger implementation of logging rules
in 1 region of Brazil shifted pressures to other regions
(Dou et al. 2018) and China’s national logging bans mean
that timber demand is being met through imports from
Indonesia (Lambin & Meyfroidt 2011). Many factors com-
plicate the ability to account for these effects over large
spatial scales, including demand and supply dynamics,
feedback cycles, and behavioral adaptation (Ferraro et al.
2019). Accounting for such factors will require further
collective, interdisciplinary thinking and methodological
developments.

There is a push for researchers in a number of fields
to publish preanalyses plans (e.g., Nosek et al. 2018),
which lay out hypotheses identified a priori and proposed
analyses before the effects are assessed (Bauhoff & Busch
2018). The aim of preanalyses plans is to reduce the risk
of HARKing (hypothesising after results are known [Kerr
1998]). As there are many potential acceptable ways to
select appropriate matches, there are benefits in publish-
ing the matching and planned analysis before carrying it
out.

Given continuous loss of biodiversity despite consid-
erable conservation efforts, there is an urgent need to
take impact evaluations more seriously, learn from other
disciplines, and improve our practices as a conservation
science community. The increasing interest in the use
of counterfactual approaches for evaluating conservation
impacts is therefore a very positive development. There
is an important role for conservation practitioners, fun-
ders, and academics to encourage this development and
to mainstream rigorous impact evaluations into conser-
vation practice. Furthermore, there is certainly a need to
increase the capacity of conservation scientists and prac-
titioners in both the conceptual and technical challenges
of impact evaluation, including by incorporating impact
evaluation and counterfactual thinking in postgraduate
training of future conservationists. We hope our article
will help improve the general quality of evaluations be-
ing undertaken and direct future research to continue to
improve the approaches currently on offer.
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