862 research outputs found

    Heat budget and thermal microenvironment of shallow-water corals: Do massive corals get warmer than branching corals?

    Full text link
    Coral surface temperature was investigated with multiple temperature sensors mounted on hemispherical and branching corals under (a) artificial lighting and controlled flow; (b) natural sunlight and controlled flow; and (c) in situ conditions in a shallow lagoon, under naturally fluctuating irradiance, water flow, and temperature. Under high irradiance and low flow conditions, hemispherical corals were 0.6°C warmer than the surrounding water. Hemispherical corals reached higher temperatures than branching corals, by a measure of 0.2°C to 0.4°C. Microsensor temperature measurements showed the presence of a thermal boundary layer (TBL). The TBL thickness was flow dependent, and under low flow conditions, a TBL up to 3 mm thick limited heat transfer to the ambient water. Combined microsensor measurements of temperature and oxygen showed that the TBL was approximately four times thicker than the diffusive boundary layer, as predicted from heat and mass transfer theory. A simple conceptual model describes coral surface temperature as a function of heat fluxes between coral tissue, skeleton, and surroundings. The slope of the predicted linear relationship between coral temperature and solar irradiance is fixed by the efficiencies of light absorption and the heat losses to the skeleton and the water. Although spectral absorptivity may play a significant role in coral warming, shape-related differences in thermal properties can cause hemispherical corals to reach higher temperatures than branching corals. Shape-related differences in thermal histories may thus help explain differences in susceptibility to coral bleaching between branching and hemispherical coral species. © 2008, by the American Society of Limnology and Oceanography, Inc

    The influence of light and tidal exposure on primary production in the tropical seagrass Zostera capricorni and Halophila ovalis

    Get PDF
    The growth, survival and depth penetration of seagrass is directly related to light availability, which drives photosynthesis. The amount of light reaching seagrass beds is highly variable and can be easily disrupted by human activities, such as dredging. Dredging results in increased turbidity and decreased light penetration to the seagrass beds, invariably influencing overall productivity and seagrass health. To better understand seagrass light requirements and resilience to environmental stressors such as dredging requires knowledge on seagrass photophysiology and the impact air exposure during a tidal cycle has on photosynthesis. Oxygen, fluorescence and bio-optical properties were measured over a tidal cycle in seagrass beds of Zostera capricorni and Halophila ovalis in Gladstone Harbour to provide insight into the variability in carbon production in intertidal seagrass meadows. Both species showed an increase in photosynthetic activity with increased irradiance as the tide receded. However, sensitivity to desiccation was observed during air-exposure with a significant decline in photosynthesis irrespective of increased light availability. Understanding the complex dynamics of seagrass photosynthesis over a tidal cycle will help in the mitigation of dredging-related light loss to Gladstone seagrass meadows

    Naturally p-hydroxybenzoylated lignins in palms

    Get PDF
    The industrial production of palm oil concurrently generates a substantial amount of empty fruit bunch (EFB) fibers that could be used as a feedstock in a lignocellulose-based biorefinery. Lignin byproducts generated by this process may offer opportunities for the isolation of value-added products, such as p-hydroxybenzoate (pBz), to help offset operating costs. Analysis of the EFB lignin by nuclear magnetic resonance (NMR) spectroscopy clearly revealed the presence of bound acetate and pBz, with saponification revealing that 1.1 wt% of the EFB was pBz; with a lignin content of 22.7 %, 4.8 % of the lignin is pBz that can be obtained as a pure component for use as a chemical feedstock. Analysis of EFB lignin by NMR and derivatization followed by reductive cleavage (DFRC) showed that pBz selectively acylates the γ-hydroxyl group of S units. This selectivity suggests that pBz, analogously with acetate in kenaf, p-coumarate in grasses, and ferulate in a transgenic poplar augmented with a feruloyl-CoA monolignol transferase (FMT), is incorporated into the growing lignin chain via its γ-p-hydroxybenzoylated monolignol conjugate. Involvement of such conjugates in palm lignification is proven by the observation of novel p-hydroxybenzoylated non-resinol β–β-coupled units in the lignins. Together, the data implicate the existence of p-hydroxybenzoyl-CoA:monolignol transferases that are involved in lignification in the various willows (Salix spp.), poplars and aspen (Populus spp., family Salicaceae), and palms (family Arecaceae) that have p-hydroxybenzoylated lignins. Even without enhancing the levels by breeding or genetic engineering, current palm oil EFB ‘wastes’ should be able to generate a sizeable stream of p-hydroxybenzoic acid that offers opportunities for the development of value-added products derived from the oil palm industry

    Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls

    Get PDF
    Background: Genome-wide association studies have identified multiple loci associated with stroke. However, the specific stroke subtypes affected, and whether loci influence both ischemic and hemorrhagic stroke, remains unknown. For loci associated with stroke, we aimed to infer the combination of stroke subtypes likely to be affected, and in doing so assess the extent to which such loci have homogeneous effects across stroke subtypes. Methods: We performed Bayesian multinomial regression in 16 664 stroke cases and 32 792 controls of European ancestry to determine the most likely combination of stroke subtypes affected for loci with published genome-wide stroke associations, using model selection. Cases were subtyped under 2 commonly used stroke classification systems, TOAST (Trial of Org 10172 Acute Stroke Treatment) and causative classification of stroke. All individuals had genotypes imputed to the Haplotype Reference Consortium 1.1 Panel. Results: Sixteen loci were considered for analysis. Seven loci influenced both hemorrhagic and ischemic stroke, 3 of which influenced ischemic and hemorrhagic subtypes under both TOAST and causative classification of stroke. Under causative classification of stroke, 4 loci influenced both small vessel stroke and intracerebral hemorrhage. An EDNRA locus demonstrated opposing effects on ischemic and hemorrhagic stroke. No loci were predicted to influence all stroke subtypes in the same direction, and only one locus (12q24) was predicted to influence all ischemic stroke subtypes. Conclusions: Heterogeneity in the influence of stroke-associated loci on stroke subtypes is pervasive, reflecting differing causal pathways. However, overlap exists between hemorrhagic and ischemic stroke, which may reflect shared pathobiology predisposing to small vessel arteriopathy. Stroke is a complex, heterogeneous disorder requiring tailored analytic strategies to decipher genetic mechanisms

    Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events

    Get PDF
    Seagrass meadows form highly productive and valuable ecosystems in the marine environment. Throughout the year, seagrass meadows are exposed to abiotic and biotic variations linked to (i) seasonal fluctuations, (ii) short-term stress events such as, e.g., local nutrient enrichment, and (iii) small-scale disturbances such as, e.g., biomass removal by grazing. We hypothesized that short-term stress events and smallscale disturbances may affect seagrass chance for survival in temperate latitudes. To test this hypothesis we focused on seagrass carbon reserves in the form of starch stored seasonally in rhizomes, as these have been defined as a good indicator for winter survival. Twelve Zostera noltei meadows were monitored along a latitudinal gradient in Western Europe to firstly assess the seasonal change of their rhizomal starch content. Secondly, we tested the effects of nutrient enrichment and/or biomass removal on the corresponding starch content by using a short-term manipulative field experiment at a single latitude in the Netherlands. At the end of the growing season, we observed a weak but significant linear increase of starch content along the latitudinal gradient from south to north. This agrees with the contention that such reserves are essential for regrowth after winter, which is more severe in the north. In addition, we also observed a weak but significant positive relationship between starch content at the beginning of the growing season and past winter temperatures. This implies a lower regrowth potential after severe winters, due to diminished starch content at the beginning of the growing season. Short-term stress and disturbances may intensify these patterns, because our manipulative experiments show that when nutrient enrichment and biomass loss co-occurred at the end of the growing season, Z. noltei starch content declined. In temperate zones, the capacity of seagrasses to accumulate carbon reserves is expected to determine carbon-based regrowth after winter. Therefore, processes affecting those reserves might affect seagrass resilience. With increasing human pressure on coastal systems, short- and small-scale stress events are expected to become more frequent, threatening the resilience of seagrass ecosystems, particularly at higher latitudes, where populations tend to have an annual cycle highly dependent on their storage capacity

    Elimination of hepatic rodent plasmodium parasites by amino acid supplementation

    Get PDF
    © 2020 The Authors.This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Plasmodium parasites, causative agents of malaria, scavenge host nutrients to sustain their intracellular replication. Modulation of the host's nutritional status can potentially help control infection by limiting the parasite's access to nutrients, or by boosting the immune system. Here, we show that dietary supplementation of mice employing a combination of arginine (R) with two additional amino acids, lysine (K) and valine (V), termed RKV, significantly decreases Plasmodium liver infection. RKV supplementation results in the elimination of parasites at a late stage of their development in the liver. Our data employing genetic knockout mouse models and in vivo depletion of specific cell populations suggest that RKV supplementation boosts the host's overall innate immune response, and that parasite elimination is dependent on MyD88 signaling in immune cells. The immunostimulatory effect of RKV supplementation opens a potential role for dietary supplementation as an adjuvant for prophylaxis or immunization strategies against Plasmodium infection.This work was supported by Fundação para a Ciência e a Tecnologia , Portugal, through Grant PTDC/SAU-INF/29550/2017 to MP.info:eu-repo/semantics/publishedVersio
    • …
    corecore