202 research outputs found
Benthic nitrogen cycling in the North Sea
We present new data on the rates of sedimentary denitrification and its component processes (canonical denitrification, anammox and dissimilatory nitrate reduction to ammonium) for intertidal and subtidal sites in the North Sea using nitrogen isotope addition methods. We find overall average denitrification rates of 6.3 (range 0.4-10.6) µmol m-2h-1, similar to those previously reported for this region and other temperate shelf environments. We find canonical denitrification to be the dominant (>90%) process of the three. At the subtidal sites, most of the denitrification is supported by nitrate generated within the sediments, while at the intertidal site the main source is from the water column. We go on to consider the impact of these rates on nitrogen cycling within the North Sea region and compare the sediment core incubation rate results to estimates derived from modelling approaches. Model rates are somewhat higher than those directly measured and we consider possible reasons for this
Estimation of the atmospheric flux of nutrients and trace metals to the Eastern Tropical North Atlantic Ocean
Atmospheric deposition contributes potentially significant amounts of the nutrients iron, nitrogen and phosphorus (via mineral dust and anthropogenic aerosols) to the oligotrophic tropical North Atlantic Ocean. Transport pathways, deposition processes and source strengths contributing to this atmospheric flux are all highly variable in space and time. Atmospheric sampling was conducted during 28 research cruises through the Eastern Tropical North Atlantic (ETNA) over a 12 year period and a substantial dataset of measured concentrations of nutrients and trace metals in aerosol and rainfall over the region was acquired. This database was used to quantify (on a spatial- and seasonal-basis) the atmospheric input of ammonium, nitrate, soluble phosphorus and soluble and total iron, aluminium and manganese to the ETNA. The magnitude of atmospheric input varies strongly across the region, with high rainfall rates associated with the Inter-tropical Convergence Zone contributing to high wet deposition fluxes in the south, particularly for soluble species. Dry deposition fluxes of species associated with mineral dust exhibited strong seasonality, with highest fluxes associated with winter-time low-level transport of Saharan dust. Overall (wet plus dry) atmospheric inputs of soluble and total trace metals were used to estimate their soluble fractions. These also varied with season and were generally lower in the dry north than in the wet south. The ratio of ammonium plus nitrate to soluble iron in deposition to the ETNA was lower than the N:Fe requirement for algal growth in all cases, indicating the importance of the atmosphere as a source of excess iron
Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity
The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from similar to 25 degrees N to 20 degrees S and compare the results with those from Atlantic meridional transects (similar to 50 degrees N to 50 degrees S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 mu mol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain similar to 10% of primary production in both the western tropical Pacific
Governing processes for reactive nitrogen compounds in the atmosphere in relation to ecosystem climatic and human health impacts
Reactive nitrogen (Nr) compounds have different fates in the atmosphere due to differences in governing processes of physical transport, deposition and chemical transformation. Nr compounds addressed here include reduced nitrogen (NHx: ammonia (NH3) and its reaction product ammonium (NH4+)), oxidized nitrogen (NOy: nitrogen monoxide (NO) + nitrogen dioxide (NO2) and their reaction products) as well as organic nitrogen compounds (organic N). Pollution abatement strategies need to take into account these differences in the governing processes of these compounds when assessing their impact on ecosystem services, biodiversity, human health and climate. NOx (NO + NO2) emitted from traffic affects human health in urban areas where the presence of buildings increases the residence time in streets. In urban areas this leads to enhanced exposure of the population to NOx concentrations. NOx emissions have little impact on nearby ecosystems because of the small dry deposition rates of NOx. These compounds need to be converted into nitric acid (HNO3) before removal through deposition is efficient. HNO3 sticks quickly to any surface and is thereby either dry deposited or incorporated into aerosols as nitrate (NO3−). In contrast to NOx compounds, NH3 has potentially high impacts on ecosystems near the main agricultural sources of NH3 because of its large ground-level concentrations along with large dry deposition rates. Aerosol phase NH4+ and NO3− contribute significantly to background PM2.5 and PM10 (mass of aerosols with a diameter of less than 2.5 and 10 μm, respectively) with an impact on radiation balance as well as potentially on human health. Little is known quantitatively and qualitatively about organic N in the atmosphere, other than that it contributes a significant fraction of wet-deposited N, and is present in both gaseous and particulate forms in the atmosphere. Further studies are needed to characterize the sources, air chemistry and removal rates of organic N emissions
Iron biogeochemistry across marine systems progress from the past decade
Based on an international workshop (Gothenburg, 14–16 May 2008), this review article aims to combine interdisciplinary knowledge from coastal and open ocean research on iron biogeochemistry. The major scientific findings of the past decade are structured into sections on natural and artificial iron fertilization, iron inputs into coastal and estuarine systems, colloidal iron and organic matter, and biological processes. Potential effects of global climate change, particularly ocean acidification, on iron biogeochemistry are discussed. The findings are synthesized into recommendations for future research areas
Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide
Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present
high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical
model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales
Quantifying and valuing carbon flows and stores in coastal and shelf ecosystems in the UK
Evidence shows that habitats with potential to mitigate against greenhouse gases emissions, by taking up and storing CO2, are being lost due to the effects of on-going human activities and climate change. The carbon storage by terrestrial habitats (e.g. tropical forests) and the role of coastal habitats (‘Blue Carbon’) as carbon storage sinks is well recognised. Offshore shelf sediments are also a manageable carbon store, covering ∼9% of global marine area, but not currently protected by international agreements to enable their conservation. Through a scenario analysis, we explore the economic value of the damage of human activities and climate change can inflict on UK marine habitats, including shelf sea sediments. In a scenario of increased human and climate pressures over a 25-year period, we estimate damage costs up to US$12.5 billion from carbon release linked to disturbance of coastal and shelf sea sediment carbon stores. It may be possible to manage socio-economic pressure to maintain sedimentary carbon storage, but the trade-offs with other global social welfare benefits such as food security will have to be taken into account. To develop effective incentive mechanisms to preserve these valuable coastal and marine ecosystems within a sustainability governance framework, robust evidence is required
Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences
A carbon budget for the northwest European continental shelf seas (NWES) was synthesized using available estimates for coastal, pelagic and benthic carbon stocks and flows. Key uncertainties were identified and the effect of future impacts on the carbon budget were assessed. The water of the shelf seas contains between 210 and 230 Tmol of carbon and absorbs between 1.3 and 3.3 Tmol from the atmosphere annually. Off-shelf transport and burial in the sediments account for 60–100 and 0–40% of carbon outputs from the NWES, respectively. Both of these fluxes remain poorly constrained by observations and resolving their magnitudes and relative importance is a key research priority. Pelagic and benthic carbon stocks are dominated by inorganic carbon. Shelf sediments contain the largest stock of carbon, with between 520 and 1600 Tmol stored in the top 0.1 m of the sea bed. Coastal habitats such as salt marshes and mud flats contain large amounts of carbon per unit area but their total carbon stocks are small compared to pelagic and benthic stocks due to their smaller spatial extent. The large pelagic stock of carbon will continue to increase due to the rising concentration of atmospheric CO2, with associated pH decrease. Pelagic carbon stocks and flows are also likely to be significantly affected by increasing acidity and temperature, and circulation changes but the net impact is uncertain. Benthic carbon stocks will be affected by increasing temperature and acidity, and decreasing oxygen concentrations, although the net impact of these interrelated changes on carbon stocks is uncertain and a major knowledge gap. The impact of bottom trawling on benthic carbon stocks is unique amongst the impacts we consider in that it is widespread and also directly manageable, although its net effect on the carbon budget is uncertain. Coastal habitats are vulnerable to sea level rise and are strongly impacted by management decisions. Local, national and regional actions have the potential to protect or enhance carbon storage, but ultimately global governance, via controls on emissions, has the greatest potential to influence the long-term fate of carbon stocks in the northwestern European continental shelf
- …