168 research outputs found

    Turbulent flow separation in three-dimensional asymmetric diffusers

    Get PDF
    Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models kωk-\omega SST,kϵk-\epsilon and v2fv^2-f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddy-resolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants

    Bio-perceptions of Hydro carbon contaminated soil and its Bioremediation effect with Biological Consortia

    Get PDF
         The present research work has clearly denoted as initially estimation of physic-chemical properties of the experimental hydrocarbon contaminated soil. The texture of the soil plays a very important role in microbial and plant species establishment and development and also influences physical parameters of the soil. The current results are clearly showed experimental soil of the hydrocarbon contaminated soil possessed totally eight different autochthonus bacterial strains were provably identified viz., Acinetobacter, Mycobacterium sp., Bacillus sp., Pseudomonas sp., and Aeromonas sp., observed by Bergy’s Manual. When this experimental soil was remediated with two biological sources such as four allothonus bacterial strains named as Enterobacter sp., Flavobacter sp.,  Shigella sp., and Bacillus sp., along with agronomic wastes also addition with neem juice. From the present result showed that Enterobacter sp., subjected polluted soil was remediated maximum than other treated sources assessed by spectrometric data. While, the biofilm formation experiment also been definitely expressed biodegradation potential enriched allothonus bacterial strain was the following order Enterobacter sp., Flavobacter sp.,  Shigella sp., and Bacillus sp.,. Moreover, other interesting finding also had been profounded such as dominant Antagonistic activity potential possessed autochthonus bacterial strain from the hydrocarbon contaminated soil. It has been identified through the molecular identification those typical organism expressed the named as ‘’Pseudomonas aeruginosa PA96’’by 16sr RNA sequence analysis. Additionaly maximum and maximum antagonistic activity has been noticed on E.coli, more or less similar zone of inhibition showed on other bacterial species of Shijella sp., and K. pneumonia.  Moreover, HPLC results were almost elucidated fractions of hydrocarbon compounds thoroughly replied total illustrated chemical compounds are gradually minimized, when the heavy contaminated soils subjected with other bacterial sources along with various agronomic wastes.  It has been significantly reduced the spectrum of the total hydrocarbon derivatives when it compared with before treatment of the contaminated soils. Therefore, these allothonous bacterial organism Enterobacter sp., strains could be considered for future use for bioremediation of oil contaminated land. However, further studies are needed to evaluate the potential of the isolated strains to degrade hydrocarbons in situ, in natural environmental conditions. This could be equally applicable for any allothonously present or other bacterial strains ubiquitously available in nature, and the technology could be further developed for targeting of any pollutants present on earth creating enormous environmental and health hazards

    Is The Indian Stock Market A Casino?

    Get PDF
    This paper examines the empirical association between stock market development and economic growth for a period of ten years around the Indian market “liberalization” event.  We find no support for the hypothesis that the Indian stock market development is associated with the economic growth in that country during the entire event study period of 1981 to 2001.  We find support for relevance of stock market to econmic development during the pre-liberalization sub-period.  We also find a negative correlation between stock market development and economic growth for the post-liberalization period.  We offer a number of hypotheses consistent with the inverse relationship between growth and stock market development in the post-liberalization period.  In particular, our results are consistent with the suggestion that the Indian Stock market is a casino for the sub-period of  post liberalization and for the entire ten-year event study period

    Modelling of an Artificial Neural Network for Electrical Discharge Machining of Hot Pressed Zirconium Diboride-Silicon Carbide Composites

    Get PDF
    Modelling is carried out to map the relationship between the input process parameters and the output response, considered in the machining process. To represent real-world systems of considerable complexity, an artificial neural network (ANN) model is often utilized to replace the mathematical approximation of the relationship. This paper explains the methodological procedure and the outcome of the ANN modelling process. The percentage of SiC in the workpiece material, the product of thermal conductivity and the melting point of the tool material, the pulse on time, and the pulse off time are considered as input parameters, while the material removal rate (MRR), the tool wear rate (TWR), roughness, roundness, taper angle and overcut are considered as output responses. The network is trained initially with one neuron in the hidden layer, i.e.,-a 4-4-6 topology is considered for training. In the subsequent phases, the number of hidden neurons in the hidden layer is increased gradually and then the network is tested with two hidden layers with the same number of hidden neurons in the second hidden layer. A feed forward back propagation neural network model with one hidden layer having 35 neurons is found to be the optimum network model (4-35-35-6). The model has the mean correlation coefficient of 0.92408

    A case study evaluating the use of clozapine in depression with psychotic features

    Get PDF
    The purpose of this case study was to use an evidence based medicine approach to work through an unusual way of treating a common problem. We looked at an example of an in-patient with severe refractory psychotic depression who had been resistant to treatment with a combination of antidepressant, antipsychotics, mood stabiliser, and concomitant ECT therapy. We then undertook a literature search for the use of clozapine in a patient with severe refractory depression. Although the resulting evidence was low level and thin, we felt on balance that a trial of clozapine was justified. We used a BPRS inventory to monitor her mood prior to commencing clozapine. Her mood and functional abilities were monitored as her clozapine was titrated upwards. Our patient showed a significant improvement in mood and functional abilities and a reduction in her BPRS score during this period. Her symptoms improved to the point where she was successfully discharged home on a combination of clozapine and an antidepressant. The improvement was sustained for a further two years. We thought this was an important case to highlight the limited evidence in using this successful form of treatment for a common clinical problem and that further research in this area was needed

    Towards resilient EU HPC systems: A blueprint

    Get PDF
    This document aims to spearhead a Europe-wide discussion on HPC system resilience and to help the European HPC community define best practices for resilience. We analyse a wide range of state-of-the-art resilience mechanisms and recommend the most effective approaches to employ in large-scale HPC systems. Our guidelines will be useful in the allocation of available resources, as well as guiding researchers and research funding towards the enhancement of resilience approaches with the highest priority and utility. Although our work is focused on the needs of next generation HPC systems in Europe, the principles and evaluations are applicable globally.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the projects ECOSCALE (grant agreement No 671632), EPI (grant agreement No 826647), EuroEXA (grant agreement No 754337), Eurolab4HPC (grant agreement No 800962), EVOLVE (grant agreement No 825061), EXA2PRO (grant agreement No 801015), ExaNest (grant agreement No 671553), ExaNoDe (grant agreement No 671578), EXDCI-2 (grant agreement No 800957), LEGaTO (grant agreement No 780681), MB2020 (grant agreement No 779877), RECIPE (grant agreement No 801137) and SDK4ED (grant agreement No 780572). The work was also supported by the European Commission’s Seventh Framework Programme under the projects CLERECO (grant agreement No 611404), the NCSA-Inria-ANL-BSC-JSCRiken-UTK Joint-Laboratory for Extreme Scale Computing – JLESC (https://jlesc.github.io/), OMPI-X project (No ECP-2.3.1.17) and the Spanish Government through Severo Ochoa programme (SEV-2015-0493). This work was sponsored in part by the U.S. Department of Energy's Office of Advanced Scientific Computing Research, program managers Robinson Pino and Lucy Nowell. This manuscript has been authored by UT-Battelle, LLC under Contract No DE-AC05-00OR22725 with the U.S. Department of Energy.Preprin

    Environmental toxicity, redox signaling and lung inflammation:the role of glutathione

    Get PDF
    Glutathione (γ-glutamyl-cysteinyl-glycine, GSH) is the most abundant intracellular antioxidant thiol and is central to redox defense during oxidative stress. GSH metabolism is tightly regulated and has been implicated in redox signaling and also in protection against environmental oxidant-mediated injury. Changes in the ratio of the reduced and disulfide form (GSH/GSSG) can affect signaling pathways that participate in a broad array of physiological responses from cell proliferation, autophagy and apoptosis to gene expression that involve H(2)O(2) as a second messenger. Oxidative stress due to oxidant/antioxidant imbalance and also due to environmental oxidants is an important component during inflammation and respiratory diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and asthma. It is known to activate multiple stress kinase pathways and redox sensitive transcription factors such as Nrf2, NF-κB and AP-1, which differentially regulate the genes for pro-inflammatory cytokines as well as the protective antioxidant genes. Understanding the regulatory mechanisms for the induction of antioxidants, such as GSH, versus pro-inflammatory mediators at sites of oxidant-directed injuries may allow for the development of novel therapies which will allow pharmacological manipulation GSH synthesis during inflammation and oxidative injury. This article features the current knowledge about the role of GSH in redox signaling, GSH biosynthesis and particularly the regulation of transcription factor Nrf2 by GSH and downstream signaling during oxidative stress and inflammation in various pulmonary diseases. We also discussed the current therapeutic clinical trials using GSH and other thiol compounds, such as N-acetyl-L-cysteine, fudosteine, carbocysteine, erdosteine in environment-induced airways disease
    corecore