233 research outputs found
Examining How Wi-Fi Affects Customers Loyalty at Different Restaurants: An Examination from South Korea
The main research objective of this study was to determine whether Wi-Fi affects customer\u27s loyalty and how its impact differs depending on the type of restaurants: coffee shops, fast food restaurants, and casual dining restaurants. For the study I designed a primary field survey to collect data and performed multiple linear regression analysis to test the study hypotheses.
Findings show that Wi-Fi service factors turned out to be significant for all types of restaurants for both attitudinal and behavioral loyalty. Wi-Fi service factors were more important for coffee shop loyalty than fast-food restaurants or casual dining restaurants. However, not all of the Wi-Fi usage factors were significant consistently. Furthermore, Wi-Fi service factors were much more important for coffee shop loyalty than fast food restaurants or casual dining restaurants. Findings are expected to assist hospitality marketers to utilize Wi-Fi service as a point of service towards their customers
Physical properties of transparent perovskite oxides (Ba,La)SnO3 with high electrical mobility at room temperature
Transparent electronic materials are increasingly in demand for a variety of
optoelectronic applications. BaSnO3 is a semiconducting oxide with a large band
gap of more than 3.1 eV. Recently, we discovered that La doped BaSnO3 exhibits
unusually high electrical mobility of 320 cm^2(Vs)^-1 at room temperature and
superior thermal stability at high temperatures [H. J. Kim et al. Appl. Phys.
Express. 5, 061102 (2012)]. Following that work, we report various physical
properties of (Ba,La)SnO3 single crystals and films including
temperature-dependent transport and phonon properties, optical properties and
first-principles calculations. We find that almost doping-independent mobility
of 200-300 cm^2(Vs)^-1 is realized in the single crystals in a broad doping
range from 1.0x10^19 to 4.0x10^20 cm^-3. Moreover, the conductivity of ~10^4
ohm^-1cm^-1 reached at the latter carrier density is comparable to the highest
value. We attribute the high mobility to several physical properties of
(Ba,La)SnO3: a small effective mass coming from the ideal Sn-O-Sn bonding,
small disorder effects due to the doping away from the SnO2 conduction channel,
and reduced carrier scattering due to the high dielectric constant. The
observation of a reduced mobility of ~70 cm^2(Vs)^-1 in the film is mainly
attributed to additional carrier-scatterings which are presumably created by
the lattice mismatch between the substrate SrTiO3 and (Ba,La)SnO3. The main
optical gap of (Ba,La)SnO3 single crystals remained at about 3.33 eV and the
in-gap states only slightly increased, thus maintaining optical transparency in
the visible region. Based on these, we suggest that the doped BaSnO3 system
holds great potential for realizing all perovskite-based, transparent
high-frequency high-power functional devices as well as highly mobile
two-dimensional electron gas via interface control of heterostructured films.Comment: 31 pages, 7 figure
A Unified Approach for Comprehensive Analysis of Various Spectral and Tissue Doppler Echocardiography
Doppler echocardiography offers critical insights into cardiac function and
phases by quantifying blood flow velocities and evaluating myocardial motion.
However, previous methods for automating Doppler analysis, ranging from initial
signal processing techniques to advanced deep learning approaches, have been
constrained by their reliance on electrocardiogram (ECG) data and their
inability to process Doppler views collectively. We introduce a novel unified
framework using a convolutional neural network for comprehensive analysis of
spectral and tissue Doppler echocardiography images that combines automatic
measurements and end-diastole (ED) detection into a singular method. The
network automatically recognizes key features across various Doppler views,
with novel Doppler shape embedding and anti-aliasing modules enhancing
interpretation and ensuring consistent analysis. Empirical results indicate a
consistent outperformance in performance metrics, including dice similarity
coefficients (DSC) and intersection over union (IoU). The proposed framework
demonstrates strong agreement with clinicians in Doppler automatic measurements
and competitive performance in ED detection
Echocardiographic View Classification with Integrated Out-of-Distribution Detection for Enhanced Automatic Echocardiographic Analysis
In the rapidly evolving field of automatic echocardiographic analysis and
interpretation, automatic view classification is a critical yet challenging
task, owing to the inherent complexity and variability of echocardiographic
data. This study presents ECHOcardiography VIew Classification with
Out-of-Distribution dEtection (ECHO-VICODE), a novel deep learning-based
framework that effectively addresses this challenge by training to classify 31
classes, surpassing previous studies and demonstrating its capacity to handle a
wide range of echocardiographic views. Furthermore, ECHO-VICODE incorporates an
integrated out-of-distribution (OOD) detection function, leveraging the
relative Mahalanobis distance to effectively identify 'near-OOD' instances
commonly encountered in echocardiographic data. Through extensive
experimentation, we demonstrated the outstanding performance of ECHO-VICODE in
terms of view classification and OOD detection, significantly reducing the
potential for errors in echocardiographic analyses. This pioneering study
significantly advances the domain of automated echocardiography analysis and
exhibits promising prospects for substantial applications in extensive clinical
research and practice
Effect of Multiple Quantum Well Periods on Structural Properties and Performance of Extended Short-Wavelength Infrared LEDs
We present research on the role of multiple quantum well periods in extended short-wavelength infrared InGaAs/InAsPSb type-I LEDs. The fabricated LEDs consisted of 6, 15, and 30 quantum well periods, and we evaluated the structural properties and device performance through a combination of theoretical simulations and experimental characterization. The strain and energy band offset was precisely controlled by carefully adjusting the composition of the InAsPSb quaternary material, achieving high valence and conduction band offsets of 350 meV and 94 meV, respectively. Our LEDs demonstrated a high degree of relaxation of 94-96 %. Additionally, we discovered that the temperature-dependent dark current characterization attributed to generation-recombination and trap-assign tunneling, with trap-assign tunneling being more dominant at lower current injections. Electroluminescence analysis revealed that the predominant emission mechanism of the LEDs originated from localized exciton and free exciton radiative recombination, which the 30 quantum wells LED exhibited the highest contribution of the localized exciton/free exciton radiative recombination. We observed that increasing the quantum well periods from 6 to 15 led to an increase in the 300 K electroluminescence intensity of the LED. However, extending the quantum well period to 30 resulted in a decline in emission intensity due to the degradation of the epitaxial film quality
Knowledge and Awareness of Congenital Cytomegalovirus Among Women
Background. Congenital cytomegalovirus (CMV) infection is a leading cause of disabilities in children, yet the general public appears to have little awareness of CMV. Methods. Women were surveyed about newborn infections at 7 different geographic locations. Results. Of the 643 women surveyed, 142 (22%) had heard of congenital CMV. Awareness increased with increasing levels of education (P < .0001). Women who had worked as a healthcare professional had a higher prevalence of awareness of CMV than had other women (56% versus 16%, P < .0001). Women who were aware of CMV were most likely to have heard about it from a healthcare provider (54%), but most could not correctly identify modes of CMV transmission or prevention. Among common causes of birth defects and childhood illnesses, women's awareness of CMV ranked last. Conclusion. Despite its large public health burden, few women had heard of congenital CMV, and even fewer were aware of prevention strategies
Genome-Wide Association Study of Lung Adenocarcinoma in East Asia and Comparison With a European Population
Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications
Search for Physics beyond the Standard Model in Events with Overlapping Photons and Jets
Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at root s = 13 TeV, and correspond to an integrated luminosity of 35.9 fb(-1). The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.Peer reviewe
- …