288 research outputs found

    Onboarding Employees Through Shared Values

    Get PDF
    How employees are on-boarded and welcomed into their new positions sets the tone for the culture of a place, the people, and the values of a new institution and can have a significant impact on employees sense of belonging. At Ohio University, the Division of Student Affairs employs approximately 400 staff and annually welcomes around 40-50 new employees a year, 25 of which are College Student Personnel (CSP) graduate students. New employees are welcomed with an ethic of care through a five day onboarding process rooted in Bolman and Deal’s human resource frame. This process includes departmental specific welcomes and trainings, along with division-wide team building, sexual misconduct training, social justice training, and suicide prevention training. This session outlined the correlation with Bolman and Deal’s human resource frame and NASPA/ ACPA competencies as well as lessons learned from implementing such a process, specifically include how these trainings intersect with the learning and development of new professionals

    A deep dive into fat: Investigating blubber lipidomic fingerprint of killer whales and humpback whales in northern Norway

    Get PDF
    In cetaceans, blubber is the primary and largest lipid body reservoir. Our current understanding about lipid stores and uses in cetaceans is still limited, and most studies only focused on a single narrow snapshot of the lipidome. We documented an extended lipidomic fingerprint in two cetacean species present in northern Norway during wintertime. We were able to detect 817 molecular lipid species in blubber of killer whales (Orcinus orca) and humpback whales (Megaptera novaeangliae). The profiles were largely dominated by triradylglycerols in both species and, to a lesser extent, by other constituents including glycerophosphocholines, phosphosphingolipids, glycerophosphoethanolamines, and diradylglycerols. Through a unique combination of traditional statistical approaches, together with a novel bioinformatic tool (LION/web), we showed contrasting fingerprint composition between species. The higher content of triradylglycerols in humpback whales is necessary to fuel their upcoming half a year fasting and energy-demanding migration between feeding and breeding grounds. In adipocytes, we assume that the intense feeding rate of humpback whales prior to migration translates into an important accumulation of triacylglycerol content in lipid droplets. Upstream, the endoplasmic reticulum is operating at full capacity to supply acute lipid storage, consistent with the reported enrichment of glycerophosphocholines in humpback whales, major components of the endoplasmic reticulum. There was also an enrichment of membrane components, which translates into higher sphingolipid content in the lipidome of killer whales, potentially as a structural adaptation for their higher hydrodynamic performance. Finally, the presence of both lipid-enriched and lipid-depleted individuals within the killer whale population in Norway suggests dietary specialization, consistent with significant differences in δ15N and δ13C isotopic ratios in skin between the two groups, with higher values and a wider niche for the lipid-enriched individuals. Results suggest the lipid-depleted killer whales were herring specialists, while the lipid-enriched individuals might feed on both herrings and seals

    Changes in serogroup and genotype prevalence among carried meningococci in the United Kingdom during vaccine implementation.

    Get PDF
    BACKGROUND: Herd immunity is important in the effectiveness of conjugate polysaccharide vaccines against encapsulated bacteria. A large multicenter study investigated the effect of meningococcal serogroup C conjugate vaccine introduction on the meningococcal population. METHODS: Carried meningococci in individuals aged 15-19 years attending education establishments were investigated before and for 2 years after vaccine introduction. Isolates were characterized by multilocus sequence typing, serogroup, and capsular region genotype and changes in phenotypes and genotypes assessed. RESULTS: A total of 8462 meningococci were isolated from 47 765 participants (17.7%). Serogroup prevalence was similar over the 3 years, except for decreases of 80% for serogroup C and 40% for serogroup 29E. Clonal complexes were associated with particular serogroups and their relative proportions fluctuated, with 12 statistically significant changes (6 up, 6 down). The reduction of ST-11 complex serogroup C meningococci was probably due to vaccine introduction. Reasons for a decrease in serogroup 29E ST-254 meningococci (from 1.8% to 0.7%) and an increase in serogroup B ST-213 complex meningococci (from 6.7% to 10.6%) were less clear. CONCLUSIONS: Natural fluctuations in carried meningococcal genotypes and phenotypes a can be affected by the use of conjugate vaccines, and not all of these changes are anticipatable in advance of vaccine introduction

    Translating Developmental Origins:Improving the Health of Women and Their Children Using a Sustainable Approach to Behaviour Change

    Get PDF
    Theories of the developmental origins of health and disease imply that optimising the growth and development of babies is an essential route to improving the health of populations. A key factor in the growth of babies is the nutritional status of their mothers. Since women from more disadvantaged backgrounds have poorer quality diets and the worst pregnancy outcomes, they need to be a particular focus. The behavioural sciences have made a substantial contribution to the development of interventions to support dietary changes in disadvantaged women. Translation of such interventions into routine practice is an ideal that is rarely achieved, however. This paper illustrates how re-orientating health and social care services towards an empowerment approach to behaviour change might underpin a new developmental focus to improving long-term health, using learning from a community-based intervention to improve the diets and lifestyles of disadvantaged women. The Southampton Initiative for Health aimed to improve the diets and lifestyles of women of child-bearing age through training health and social care practitioners in skills to support behaviour change. Analysis illustrates the necessary steps in mounting such an intervention: building trust; matching agendas and changing culture. The Southampton Initiative for Health demonstrates that developing sustainable; workable interventions and effective community partnerships; requires commitment beginning long before intervention delivery but is key to the translation of developmental origins research into improvements in human health

    Dynamically Driven Evolution of the Interstellar Medium in M51

    Full text link
    We report the highest-fidelity observations of the spiral galaxy M51 in CO emission, revealing the evolution of giant molecular clouds (GMCs) vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (so-called GMAs) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics --their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the inter-arm region and into the next spiral arm passage.Comment: 6 pages, including 3 figures. Accepted, ApJ

    The CATERPILLER protein Monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor α-, and Mycobacterium tuberculosis-induced pro-inflammatory signals

    Get PDF
    The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) α and Mycobacterium tuberculosis. Monarch-1 reduces NFκB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFκB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFκB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFα, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation

    Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.

    Get PDF
    Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT), during antiretroviral therapy (ART) induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans

    Symmetry Energy II: Isobaric Analog States

    Full text link
    Using excitation energies to isobaric analog states (IAS) and charge invariance, we extract nuclear symmetry coefficients, from a mass formula, on a nucleus-by-nucleus basis. Consistently with charge invariance, the coefficients vary weakly across an isobaric chain. However, they change strongly with nuclear mass and range from a_a~10 MeV at mass A~10 to a_a~22 MeV at A~240. Following the considerations of a Hohenberg-Kohn functional for nuclear systems, we determine how to find in practice the symmetry coefficient using neutron and proton densities, even when those densities are simultaneously affected by significant symmetry-energy and Coulomb effects. These results facilitate extracting the symmetry coefficients from Skyrme-Hartree-Fock (SHF) calculations, that we carry out using a variety of Skyrme parametrizations in the literature. For the parametrizations, we catalog novel short-wavelength instabilities. In comparing the SHF and IAS results for the symmetry coefficients, we arrive at narrow (+-2.4 MeV) constraints on the symmetry energy values S(rho) at 0.04<rho<0.13 fm^-3. Towards normal density the constraints significantly widen, but the normal value of energy a_a^V and the slope parameter L are found to be strongly correlated. To narrow the constraints, we reach for the measurements of asymmetry skins and arrive at a_a^V=(30.2-33.7) MeV and L=(35-70) MeV, with those values being again strongly positively correlated along the diagonal of their combined region. Inclusion of the skin constraints allows to narrow the constraints on S(rho), at 0.04<rho<0.13 fm^-3, down to +-1.1 MeV. Several microscopic calculations, including variational, Bruckner-Hartree-Fock and Dirac-Bruckner-Hartree-Fock, are consistent with our constraint region on S(rho).Comment: 101 pages, 27 figures, 2 tables; submitted to Nuclear Physics
    corecore