11 research outputs found

    Using Actiwatch to monitor circadian rhythm disturbance in Huntington' disease: A cautionary note

    Get PDF
    Huntington's disease (HD) is an inherited neurodegenerative disorder that is well recognised as producing progressive deterioration of motor function, including dyskinetic movements, as well as deterioration of cognition and ability to carry out activities of daily living. However, individuals with HD commonly suffer from a wide range of additional symptoms, including weight loss and sleep disturbance, possibly due to disruption of circadian rhythmicity. Disrupted circadian rhythms have been reported in mice models of HD and in humans with HD. One way of assessing an individual's circadian rhythmicity in a community setting is to monitor their sleep/wake cycles, and a convenient method for recording periods of wakefulness and sleep is to use accelerometers to discriminate between varied activity levels (including sleep) during daily life. Here we used Actiwatch® Activity monitors alongside ambulatory EEG and sleep diaries to record wake/sleep patterns in people with HD and normal volunteers. We report that periods of wakefulness during the night, as detected by activity monitors, agreed poorly with EEG recordings in HD subjects, and unsurprisingly sleep diary findings showed poor agreement with both EEG recordings and activity monitor derived sleep periods. One explanation for this is the occurrence of 'break through' involuntary movements during sleep in the HD patients, which are incorrectly assessed as wakeful periods by the activity monitor algorithms. Thus, care needs to be taken when using activity monitors to assess circadian activity in individuals with movement disorders

    Safety and Feasibility of Research Lumbar Puncture in Huntington’s Disease: The HDClarity Cohort and Bioresource

    Get PDF
    Background: Biomarkers are needed to monitor disease progression, target engagement and efficacy in Huntington’s disease (HD). Cerebrospinal fluid (CSF) is an ideal medium to research such biomarkers due to its proximity to the brain. Objective: To investigate the safety and feasibility of research lumbar punctures (LP) in HD. Methods: HDClarity is an ongoing international biofluid collection initiative built on the Enroll-HD platform, where clinical assessments are recorded. It aims to recruit 1,200 participants. Biosamples are collected following an overnight fast: blood via venipuncture and CSF via LP. Participants are healthy controls and HD gene expansion carriers across the disease spectrum. We report on monitored data from February 2016 to September 2019. Results: Of 448 participants screened, 398 underwent at least 1 sampling visit, of which 98.24% were successful (i.e., CSF was collected), amounting to 10,610 mL of CSF and 8,200 mL of plasma. In the total 572 sampling visits, adverse events were reported in 24.13%, and headaches of any kind and post-LP headaches in 14.86% and 12.24%, respectively. Frequencies were less in manifest HD; gender, age, body mass index and disease burden score were not associated with the occurrence of the events in gene expansion carriers. Headaches and back pain were the most frequent adverse events. Conclusion: HDClarity is the largest CSF collection initiative to support scientific research into HD and is now stablished as a leading resource for HD research. Our data confirm that research LP in HD are feasible and acceptable to the community, and have a manageable safety profile

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Clinical manifestations of intermediate allele carriers in Huntington disease

    No full text
    Objective: There is controversy about the clinical consequences of intermediate alleles (IAs) in Huntington disease (HD). The main objective of this study was to establish the clinical manifestations of IA carriers for a prospective, international, European HD registry. Methods: We assessed a cohort of participants at risk with <36 CAG repeats of the huntingtin (HTT) gene. Outcome measures were the Unified Huntington's Disease Rating Scale (UHDRS) motor, cognitive, and behavior domains, Total Functional Capacity (TFC), and quality of life (Short Form-36 [SF-36]). This cohort was subdivided into IA carriers (27-35 CAG) and controls (<27 CAG) and younger vs older participants. IA carriers and controls were compared for sociodemographic, environmental, and outcome measures. We used regression analysis to estimate the association of age and CAG repeats on the UHDRS scores. Results: Of 12,190 participants, 657 (5.38%) with <36 CAG repeats were identified: 76 IA carriers (11.56%) and 581 controls (88.44%). After correcting for multiple comparisons, at baseline, we found no significant differences between IA carriers and controls for total UHDRS motor, SF-36, behavioral, cognitive, or TFC scores. However, older participants with IAs had higher chorea scores compared to controls (p 0.001). Linear regression analysis showed that aging was the most contributing factor to increased UHDRS motor scores (p 0.002). On the other hand, 1-year follow-up data analysis showed IA carriers had greater cognitive decline compared to controls (p 0.002). Conclusions: Although aging worsened the UHDRS scores independently of the genetic status, IAs might confer a late-onset abnormal motor and cognitive phenotype. These results might have important implications for genetic counseling. ClinicalTrials.gov identifier: NCT01590589

    Optimization of adsorptive removal of α-toluic acid by CaO2 nanoparticles using response surface methodology

    Get PDF
    The present work addresses the optimization of process parameters for adsorptive removal of α-toluic acid by calcium peroxide (CaO2) nanoparticles using response surface methodology (RSM). CaO2 nanoparticles were synthesized by chemical precipitation method and confirmed by Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis which shows the CaO2 nanoparticles size range of 5–15 nm. A series of batch adsorption experiments were performed using CaO2 nanoparticles to remove α-toluic acid from the aqueous solution. Further, an experimental based central composite design (CCD) was developed to study the interactive effect of CaO2 adsorbent dosage, initial concentration of α-toluic acid, and contact time on α-toluic acid removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was performed to determine the significance of the individual and the interactive effects of variables on the response. The model predicted response showed a good agreement with the experimental response, and the coefficient of determination, (R2) was 0.92. Among the variables, the interactive effect of adsorbent dosage and the initial α-toluic acid concentration was found to have more influence on the response than the contact time. Numerical optimization of process by RSM showed the optimal adsorbent dosage, initial concentration of α-toluic acid, and contact time as 0.03 g, 7.06 g/L, and 34 min respectively. The predicted removal efficiency was 99.50%. The experiments performed under these conditions showed α-toluic acid removal efficiency up to 98.05%, which confirmed the adequacy of the model prediction

    Clinical and genetic characteristics of late-onset Huntington's disease

    No full text
    Background: The frequency of late-onset Huntington's disease (&gt;59 years) is assumed to be low and the clinical course milder. However, previous literature on late-onset disease is scarce and inconclusive. Objective: Our aim is to study clinical characteristics of late-onset compared to common-onset HD patients in a large cohort of HD patients from the Registry database. Methods: Participants with late- and common-onset (30–50 years)were compared for first clinical symptoms, disease progression, CAG repeat size and family history. Participants with a missing CAG repeat size, a repeat size of ≤35 or a UHDRS motor score of ≤5 were excluded. Results: Of 6007 eligible participants, 687 had late-onset (11.4%) and 3216 (53.5%) common-onset HD. Late-onset (n = 577) had significantly more gait and balance problems as first symptom compared to common-onset (n = 2408) (P &lt;.001). Overall motor and cognitive performance (P &lt;.001) were worse, however only disease motor progression was slower (coefficient, −0.58; SE 0.16; P &lt;.001) compared to the common-onset group. Repeat size was significantly lower in the late-onset (n = 40.8; SD 1.6) compared to common-onset (n = 44.4; SD 2.8) (P &lt;.001). Fewer late-onset patients (n = 451) had a positive family history compared to common-onset (n = 2940) (P &lt;.001). Conclusions: Late-onset patients present more frequently with gait and balance problems as first symptom, and disease progression is not milder compared to common-onset HD patients apart from motor progression. The family history is likely to be negative, which might make diagnosing HD more difficult in this population. However, the balance and gait problems might be helpful in diagnosing HD in elderly patients

    Suicidal ideation in a European Huntington's disease population.

    No full text

    Cognitive decline in Huntington's disease expansion gene carriers

    No full text
    corecore