137 research outputs found

    Body length rather than routine metabolic rate and body condition correlates with activity and risk-taking in juvenile zebrafish Danio rerio

    Get PDF
    In this study, the following hypotheses were explored using zebrafish Danio rerio: (1) individuals from the same cohort differ consistently in activity and risk-taking and (2) variation in activity and risk-taking is linked to individual differences in metabolic rate, body length and body condition. To examine these hypotheses, juvenile D. rerio were tested for routine metabolic rate and subsequently exposed to an open field test. Strong evidence was found for consistent among-individual differences in activity and risk-taking, which were overall negatively correlated with body length, i.e. larger D. rerio were found to be less active in a potentially dangerous open field and a similar trend was found with respect to a more direct measure of their risk-taking tendency. In contrast, routine metabolic rate and body condition were uncorrelated with both activity and risk-taking of juvenile D. rerio. These findings suggest that body length is associated with risk-related behaviours in juvenile D. rerio for which larger, rather than smaller, individuals may have a higher risk of predation, while the role for routine metabolic rate is relatively limited or non-existent, at least under the conditions of the present study

    Comparison of Migratory and Resident Populations of Brown Trout Reveals Candidate Genes for Migration Tendency

    Get PDF
    Candidate genes associated with migration have been identified in multiple taxa: including salmonids, many of whom perform migrations requiring a series of physiological changes associated with the freshwater-saltwater transition. We screened over 5,500 SNPs for signatures of selection related to migratory behavior of brown trout Salmo trutta by focusing on ten differentially migrating freshwater populations from two watersheds (the Koutajoki and the Oulujoki). We found eight outlier SNPs potentially associated with migratory versus resident life history using multiple (>= 3) outlier detection approaches. Comparison of three migratory versus resident population pairs in the Koutajoki watershed revealed seven outlier SNPs, of which three mapped close to genes ZNF665-like, GRM4-like, and PCDH8-like that have been previously associated with migration and smoltification in salmonids. Two outlier SNPs mapped to genes involved in mucus secretion (ST3GAL1-like) and osmoregulation (C14orf37-like). The last two strongly supported outlier SNPs mapped to thermally induced genes (FNTA1-like, FAM134C-like). Within the Oulujoki, the only consistent outlier SNP mapped close to a gene (EZH2) that is associated with compensatory growth in fasted trout. Our results suggest that a relatively small yet common set of genes responsible for physiological functions associated with resident and migratory life histories is evolutionarily conserved

    Generalist invasion in a complex lake food web

    Get PDF
    Invasive species constitute a threat not only to native populations but also to the structure and functioning of entire food webs. Despite being considered as a global problem, only a small number of studies have quantitatively predicted the food web-level consequences of invasions. Here, we use an allometric trophic network model parameterized using empirical data on species body masses and feeding interactions to predict the effects of a possible invasion of Amur sleeper (Perccottus glenii), on a well-studied lake ecosystem. We show that the modeled establishment of Amur sleeper decreased the biomasses o ftop predator fishes by about 10%–19%. These reductions were largely explained by increased larval competition for food and Amur sleeper predation on fish larvae. In contrast, biomasses of less valued fish of lower trophic positions increased by about 0.4%–9% owing to reduced predation pressure by top piscivores. The predicted impact of Amur sleeper establishment on the biomasses of native fish species vastly exceeded the impacts of current-dayfishing pressures.H2020 European Research Council, Grant/Award Number: COMPLEX-FISH770884; Academy of Finland, Grant/Award Numbers: 317495, 325107,340901; Natural Sciences and Engineering Research Council of Canada; Estonian Research Council, Grant/Award Numbers: PSG32, PRG1167, PRG709, MOBJD29; Estonian University of Life Sciences, Grant/Award Number: P190254PKKH; European Union's Horizon 2020 Research and Innovation Programme, Grant/Award Number: TREICLAKE 951963H2020 European Research Council, Grant/Award Number: COMPLEX-FISH770884; Academy of Finland, Grant/Award Numbers: 317495, 325107,340901; Natural Sciences and EngineeringResearch Council of Canada; EstonianResearch Council, Grant/Award Numbers: PSG32, PRG1167, PRG709, MOBJD29; Estonian University of Life Sciences, Grant/Award Number: P190254PKKH; European Union's Horizon 2020 Research and Innovation Programme, Grant/AwardNumber: TREICLAKE 95196

    Stereospecific modulation of GABA(A) receptor function by urocanic acid isomers

    Get PDF
    A deamination product of histidine, urocanic acid, accumulates in the skin of mammals as trans-urocanic acid. Ultraviolet (UV) irradition converts it to the cis-isomer that is an important mediator in UV-induced immunosuppression. We have recently shown that urocanic acid interferes with the agonist binding to GABAA receptors. We now report that the effects of urocanic acid on binding of a convulsant ligand (t-butylbicyclo[35S]phosphorothionate) to GABAA receptors in brain membrane homogenates are dependent on pH of the incubation medium, the agonistic actions being enhanced at the normal pH of the skin (5.5). Using Xenopus laevis oocytes expressing recombinant rat alpha1beta1gamma2S GABAA receptors, the low pH potentiated the direct agonistic action of trans-urocanic acid under two-electrode voltage-clamp, whereas cis-urocanic acid retained its low efficacy both at pH 5.5 and 7.4. The results thus indicate clear differences between urocanic acid isomers in functional activity at one putative receptor site of immunosuppression, the GABAA receptor, the presence of which in the skin remains to be demonstrated.</p

    Comparing RADseq and microsatellites for estimating genetic diversity and relatedness - Implications for brown trout conservation

    Get PDF
    The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F-ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.Peer reviewe

    On the challenges and opportunities facing fish biology: a discussion of five key knowledge gaps

    Get PDF
    Many fish species face increasing challenges associated with climate change and overfishing. At the same time, aquaculture is becoming vital for food security. Gaining a deeper understanding of the basic biology of fish is therefore more important than ever. Here we synthesize and summarize key questions, opportunities and challenges in fish biology highlighted during a round‐table discussion at the 50th Anniversary Symposium of The Fisheries Society of the British Isles, held at the University of Exeter, U.K., in July 2017. We identified several knowledge gaps but also key opportunities for fish biology to inform food security, for collective behaviour, evolutionary history and trait correlations to predict responses to environmental change and for novel analytical approaches to mine existing data sets. Overall, more integrative approaches through stronger collaborations across different fields are needed to advance our understanding of the basic biology of fish

    Genetic-based evaluation of management units for sustainable vendace (Coregonus albula) fisheries in a large lake system

    Get PDF
    The goal of the processing industry, trade and consumers is to get eco-labelled freshwater fish products from sustainable fisheries into the market as soon as possible. The fourth largest natural lake system in Europe, the Saimaa lake system supports a fishery for vendace (Coregonus albula). Certification of the fishery requires an understanding of population structure to help determine the number and spatial extent of management units. In this study, we analysed the genetic diversity of local vendace populations in the Saimaa lake system and aimed to identify the conservation and management units of vendace. Within the Saimaa, the genetic divergence between local populations of vendace was weak and their genetic divergence did not follow an isolation by geographic distance pattern. Vendace has potential to disperse effectively within and between local populations in different lake basins. Even if we observed subtle genetic divergence within our study systems, available information showed no significant evidence that the local populations had unique evolutionarily significant traits. The local populations of the Saimaa lake system seem to have similar life history and morphological traits as in the whole Central Finland lake district. The conservation of genetic diversity seemed not to require basin-specific actions and we conclude that management of local vendace populations of Saimaa as one management unit is advisable

    Association Mapping Based on a Common-Garden Migration Experiment Reveals Candidate Genes for Migration Tendency in Brown Trout

    Get PDF
    A better understanding of the environmental and genetic contribution to migratory behavior and the evolution of traits linked to migration is crucial for fish conservation and fisheries management. Up to date, a few genes with unequivocal influence on the adoption of alternative migration strategies have been identified in salmonids. Here, we used a common garden set-up to measure individual migration distances of generally highly polymorphic brown trout Salmo trutta from two populations. Fish from the assumedly resident population showed clearly shorter migration distances than the fish from the assumed migratory population at the ages of 2 and 3 years. By using two alternative analytical pipelines with 22186 and 18264 SNPs obtained through RAD-sequencing, we searched for associations between individual migration distance, and both called genotypes and genotype probabilities. None of the SNPs showed statistically significant individual effects on migration after correction for multiple testing. By choosing a less stringent threshold, defined as an overlap of the top 0.1% SNPs identified by the analytical pipelines, GAPIT and Angsd, we identified eight candidate genes that are potentially linked to individual migration distance. While our results demonstrate large individual and population level differences in migration distances, the detected genetic associations were weak suggesting that migration traits likely have multigenic control

    Experimental Size‐Selective Harvesting Affects Behavioral Types of a Social Fish

    Get PDF
    In most fisheries, larger fish experience substantially higher mortality than smaller fish. Body length, life-history and behavioral traits often correlate, such that fisheries-induced changes in size or life-history can also alter behavioural traits. However, empirical evidence regarding how size-selective harvesting alters the evolution of behavioural traits in exploited stocks is scarce. We used experimental lines of zebrafish (Danio rerio) that were exposed to positive, negative or random size-selective harvest over five generations. Our aim was to investigate whether simulated fishing changed the mean personality of the surviving females five generations after initial harvesting halted. We found that mean boldness, activity, and sociability were significantly altered relative to a randomly harvested control line. Harvestinduced changes in individual-level personality were only detected in the negatively sizeselected line. By contrast, we did not detect harvest-induced evolution of personality in the positively size-selected line. We conclude that size-selective harvesting alters individual fish personality in a social fish.peerReviewe
    • 

    corecore