905 research outputs found
Value Encoding in Single Neurons in the Human Amygdala during Decision Making
A growing consensus suggests that the brain makes simple choices by assigning values to the stimuli under consideration and then comparing these values to make a decision. However, the network involved in computing the values has not yet been fully characterized. Here, we investigated whether the human amygdala plays a role in the computation of stimulus values at the time of decision making. We recorded single neuron activity from the amygdala of awake patients while they made simple purchase decisions over food items. We found 16 amygdala neurons, located primarily in the basolateral nucleus that responded linearly to the values assigned to individual items
Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values
The massively parallel computation of absolute binding free energy with a
well-equilibrated system (MP-CAFEE) has been developed [H. Fujitani, Y. Tanida,
M. Ito, G. Jayachandran, C. D. Snow, M. R. Shirts, E. J. Sorin, and V. S.
Pande, J. Chem. Phys. , 084108 (2005)]. As an application, we
perform the binding affinity calculations of six theophylline-related ligands
with RNA aptamer. Basically, our method is applicable when using many compute
nodes to accelerate simulations, thus a parallel computing system is also
developed. To further reduce the computational cost, the adequate non-uniform
intervals of coupling constant , connecting two equilibrium states,
namely bound and unbound, are determined. The absolute binding energies  thus obtained have effective linear relation between the computed and
experimental values. If the results of two other different methods are
compared, thermodynamic integration (TI) and molecular mechanics
Poisson-Boltzmann surface area (MM-PBSA) by the paper of Gouda  [H.
Gouda, I. D. Kuntz, D. A. Case, and P. A. Kollman, Biopolymers , 16
(2003)], the predictive accuracy of the relative values  is
almost comparable to that of TI: the correlation coefficients (R) obtained are
0.99 (this work), 0.97 (TI), and 0.78 (MM-PBSA). On absolute binding energies
meanwhile, a constant energy shift of  -7 kcal/mol against the
experimental values is evident. To solve this problem, several presumable
reasons are investigated.Comment: 23 pages including 6 figure
Recommended from our members
The role of motivation within an activity system for adults learning English as a second language
This project attempts to conceptualize the relationship between the language learner and the social world, developing a comprehensive theory of identity that integrates the language learner and the language learning context, while trying to keep motivation high
The Effect of Various Root Characteristics on Root-pulling Resistance of 44 Inbred Lines of Corn
The purposes of this study were to determine (1) the range of root-pulling resistance that exists among inbred lines, (2) the repeatability of root-pulling measurements as well as other root characteristics in differing environmental conditions, and (3) the relationship between root pulling resistance and root characteristics such as root spread, root dry weight, root abundance, and root rot resistance
Design principles for riboswitch function
Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands
Auditory Spatial Layout
All auditory sensory information is packaged in a pair of acoustical pressure waveforms, one at each ear. While there is obvious structure in these waveforms, that structure (temporal and spectral patterns) bears no simple relationship to the structure of the environmental objects that produced them. The properties of auditory objects and their layout in space must be derived completely from higher level processing of the peripheral input. This chapter begins with a discussion of the peculiarities of acoustical stimuli and how they are received by the human auditory system. A distinction is made between the ambient sound field and the effective stimulus to differentiate the perceptual distinctions among various simple classes of sound sources (ambient field) from the known perceptual consequences of the linear transformations of the sound wave from source to receiver (effective stimulus). Next, the definition of an auditory object is dealt with, specifically the question of how the various components of a sound stream become segregated into distinct auditory objects. The remainder of the chapter focuses on issues related to the spatial layout of auditory objects, both stationary and moving
Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems
RNA molecules perform diverse regulatory functions in natural biological systems, and numerous synthetic RNA-based control devices that integrate sensing and gene-regulatory functions have been demonstrated, predominantly in bacteria and yeast. Despite potential advantages of RNA-based genetic control strategies in clinical applications, there has been limited success in extending engineered RNA devices to mammalian gene-expression control and no example of their application to functional response regulation in mammalian systems. Here we describe a synthetic RNA-based regulatory system and its application in advancing cellular therapies by linking rationally designed, drug-responsive, ribozyme-based regulatory devices to growth cytokine targets to control mouse and primary human T-cell proliferation. We further demonstrate the ability of our synthetic controllers to effectively modulate T-cell growth rate in response to drug input in vivo. Our RNA-based regulatory system exhibits unique properties critical for translation to therapeutic applications, including adaptability to diverse ligand inputs and regulatory targets, tunable regulatory stringency, and rapid response to input availability. By providing tight gene-expression control with customizable ligand inputs, RNA-based regulatory systems can greatly improve cellular therapies and advance broad applications in health and medicine
Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing
MicroRNAs (miRNAs) are prevalent regulatory RNAs that mediate gene silencing and play key roles in diverse cellular processes. While synthetic RNA-based regulatory systems that integrate regulatory and sensing functions have been demonstrated, the lack of detail on miRNA structure–function relationships has limited the development of integrated control systems based on miRNA silencing. Using an elucidated relationship between Drosha processing and the single-stranded nature of the miRNA basal segments, we developed a strategy for designing ligand-responsive miRNAs. We demonstrate that ligand binding to an aptamer integrated into the miRNA basal segments inhibits Drosha processing, resulting in titratable control over gene silencing. The generality of this control strategy was shown for three aptamer–small molecule ligand pairs. The platform can be extended to the design of synthetic miRNAs clusters, cis-acting miRNAs and self-targeting miRNAs that act both in cis and trans, enabling fine-tuning of the regulatory strength and dynamics. The ability of our ligand-responsive miRNA platform to respond to user-defined inputs, undergo regulatory performance tuning and display scalable combinatorial control schemes will help advance applications in biological research and applied medicine
A window to the amygdala: concurrent encoding of choice preference in multi-unit activity in the amygdala and in eye movements
- …
