9 research outputs found

    Fast, reversible interaction of prion protein with RNA aptamers containing specific sequence patterns

    No full text
    International audienceOne of the unsolved problems in prion diseases relates to the physiological function of cellular prion protein (PrP), of which a misfolded isoform is the major component of the transmissible spongiform encephalopathies agent. Knowledge of the PrP-binding molecules may help in elucidating its role and understanding the pathological events underlying prion diseases. Because nucleic acids are known to bind PrP, we attempted to identify the preferred RNA sequences that bind to the ovine recombinant PrP. An in vitro selection approach (SELEX) was applied to a pool of 80-nucleotide(nt)-long RNAs containing a randomised 40-nt central region. The most frequently isolated aptamer, RM312, was also the best ligand (20 nM KD value), according to both surface plasmon resonance and filter binding assays. The fast rates of association and dissociation of RM312 with immobilized PrP, which are reminiscent of biologically relevant interactions, could point to a physiological function of PrP towards cellular nucleic acids. The minimal sequence that we found necessary for binding of RM312 to PrP presents a striking similarity with one previously described PrP aptamer of comparable affinity. In addition, we here identify the two lysine clusters contained in the N-terminal part of PrP as its main nucleic-acid binding sites

    The endothelial cholesterol efflux is promoted by the high-density lipoprotein anionic peptide factor

    No full text
    International audienceThe prevention of atherosclerosis depends on the high-density lipoprotein (HDL) capacity to stimulate the efflux of unesterified cholesterol (UC). We tested here the effects of 2 HDL apolipoproteins, apo A-I and the 7-kd anionic peptide factor (APF), on the UC efflux by human endothelial ECV 304 cells in culture. Apolipoprotein A-I (10 lmol/L) or APF (3.5 lmol/L) in lipid-free forms or small particles (13 nm with apo A-I or 19 nm with APF) were incubated in the presence of [4-14C]UC. The phosphatidylcholines (PCs) were present either at a low level (0.35 mmol/L with apo A-I or 0.20 mmol/L with APF) or at a high level (1 mmol/L with apo A-I). We also tested either large 53-nm bile lipoprotein complex–like particles (3.5 lmol/L APF [13 lg/500 lL]) with a high PC level (0.65 mmol/L) or a 9-residue synthetic peptide (13 lg/500 lL), derived from the NH2-terminal domain of HDL3-APF, in a lipid-free or low-lipidated (0.20 mmol/L PCs) form. A control was developed in absence of the added compounds. A rapid [4-14C]UC efflux mediated by APF added in free form or in 19-nm complexes was 2.2- to 2.3-fold higher than that mediated by apo A-I in free form or in 13-nm particles ( P b .05). The level of this high APFrelated efflux was comparable with that obtained with the 12-nm native HDLs (10 lmol/L apo A-I) or free PCs (1 mmol/L). The increase in the UC efflux was much more limited (1.4-fold) in the presence of the 53-nm APF/high-PC particles, but it was higher than that mediated by apo A-I. In addition, the efflux mediated by the synthetic peptide, in lipid-free or low-lipidated form, constituted the major part of that related to the full-length APF. Thus, all these particles are very active HDL components, able to act as cholesterol acceptors. Interestingly, we further showed a new anti-atherogenic property of APF as well as its metabolic importance and clinical relevance. By its involvement in the first step of the reverse cholesterol transport, APF could reduce the risk of cardiovascular disease

    Nanobiosensors based on individual olfactory receptors

    No full text
    International audienceThe animal olfactory system represents the gold standard of biosensors, due to its ability to identify and discriminate thousands of odorant compounds with very low thresholds. Using olfactory receptors (ORs) as sensing elements instead of chemical sensors, biosensors would benefit the naturally optimized molecular recognition of odorants to develop a new generation of bioelectronic noses. The purpose of SPOT-NOSED European project was the development of nanobiosensors based on single ORs anchored between nanoelectrodes, to mimic the performances of natural olfactory system. Nanobiosensors arrays could then increase odorant sensitivity or widen the odorant detection spectrum. ORs were expressed in yeasts plasmic membrane, and their functionality tested in whole yeasts. Then, nanosomes bearing the ORs were prepared from S. cerevisiae, and Surface Plasmon Resonance was performed on nanosomes for quantitative evaluation of OR response to odorant stimulation. ORs retain full activity and discrimination power in immobilized nanosomes, thus allowing their use in the fabrication of the nanobiosensors. Nanoelectrodes were fabricated using conventional photolithography and focused ion beam milling, with sizes in adequation with the nanosomes. ORs borne by nanosomes were specifically immobilized onto conducting substrates via mixed Self Assembled Monolayers, neutravidin and specific antibody to the ORs. The process was optimized by microcontact printing, and the anchored nanovesicles visualized by Atomic Force Microscopy. A transimpedance preamplifier suited for low-noise wide-bandwidth measurements was designed to be directly connected to the nanoelectrodes. Electrochemical Impedancemetric Spectroscopy detected significant changes upon electrodes functionalization, grafting of ORs carried by nanosomes, and ORs conformational change induced by odorant binding

    C. Literaturwissenschaft.

    No full text
    corecore