218 research outputs found

    Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity

    Get PDF
    BACKGROUND The Cation Diffusion Facilitator (CDF) family is a ubiquitous family of heavy metal transporters. Much interest in this family has focused on implications for human health and bioremediation. In this work a broad phylogenetic study has been undertaken which, considered in the context of the functional characteristics of some fully characterised CDF transporters, has aimed at identifying molecular determinants of substrate selectivity and at suggesting metal specificity for newly identified CDF transporters. RESULTS Representative CDF members from all three kingdoms of life (Archaea, Eubacteria, Eukaryotes) were retrieved from genomic databases. Protein sequence alignment has allowed detection of a modified signature that can be used to identify new hypothetical CDF members. Phylogenetic reconstruction has classified the majority of CDF family members into three groups, each containing characterised members that share the same specificity towards the principally-transported metal, i.e. Zn, Fe/Zn or Mn. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The function of some conserved amino acids was assessed by site-directed mutagenesis in the poplar Zn2+ transporter PtdMTP1 and compared with similar experiments performed in prokaryotic members. An essential structural role can be assigned to a widely conserved glycine residue, while aspartate and histidine residues, highly conserved in putative transmembrane domains, might be involved in metal transport. The potential role of group-conserved amino acid residues in metal specificity is discussed. CONCLUSION In the present study phylogenetic and functional analyses have allowed the identification of three major substrate-specific CDF groups. The metal selectivity of newly identified CDF transporters can be inferred by their position in one of these groups. The modified signature sequence proposed in this work can be used to identify new hypothetical CDF members

    Heuristique pour la construction de blocs mensuels personnalisés d'agents de bord

    Get PDF
    Fabrication de blocs mensuels personnalisés -- Le preferential bidding systems -- Méthode de résolution existante -- Réseau et algorithme de plus court chemin -- Résolution par génération de colonnes (GENCOL) -- Nouvelle méthode de résolution -- Les compteurs C1 -- Les compteurs C2 -- Hybride Gencol-Heuristique -- Relation entre l'Heuristique et la méthode exacte -- Open Time -- Tests

    Does maternal environmental condition during reproductive development induce genotypic selection in Picea abies ?

    Get PDF
    In forest trees, environmental conditions during reproduction can greatly influence progeny performance. This phenomenon probably results from adaptive phenotypic plasticity but also may be associated with genotypic selection. In order to determine whether selective effects during the reproduction are environment specific, single pair-crosses of Norway spruce were studied in two contrasted maternal environments (warm and cold conditions). One family expressed large and the other small phenotypic differences between these crossing environments. The inheritance of genetic polymorphism was analysed at the seed stage. Four parental genetic maps covering 66 to 78% of the genome were constructed using 190 to 200 loci. After correcting for multiple testing, there is no evidence of locus under strong and repeatable selection. The maternal environment could thus only induce limited genotypic-selection effects during reproductive steps, and performance of progenies may be mainly affected by a long-lasting epigenetic memory regulated by temperature and photoperiod prevailing during seed productio

    Do maternal environmental conditions during reproductive development induce genotypic selection in Picea abies?

    Get PDF
    In forest trees, environmental conditions during reproduction can greatly influence progeny performance. This phenomenon probably results from adaptive phenotypic plasticity but also may be associated with genotypic selection. In order to determine whether selective effects during the reproduction are environment specific, single pair-crosses of Norway spruce were studied in two contrasted maternal environments (warm and cold conditions). One family expressed large and the other small phenotypic differences between these crossing environments. The inheritance of genetic polymorphism was analysed at the seed stage. Four parental genetic maps covering 66 to 78% of the genome were constructed using 190 to 200 loci. After correcting for multiple testing, there is no evidence of locus under strong and repeatable selection. The maternal environment could thus only induce limited genotypic-selection effects during reproductive steps, and performance of progenies may be mainly affected by a long-lasting epigenetic memory regulated by temperature and photoperiod prevailing during seed production.L'environnement maternel induit-il une sélection génotypique durant les différents stades de reproduction chez Picea abies ?. Chez les arbres forestiers, les conditions environnementales durant la reproduction peuvent influencer les performances des descendants. Ce phénomène reflète probablement la plasticité phénotypique, mais également il pourrait être associé à une sélection génotypique. Afin de déterminer si des effets sélectifs durant la reproduction sont spécifiques d'un environnement donné, deux familles d'épicéa commun non apparentées ont été obtenues par croisements dirigés dans deux environnements maternels contrastés (conditions chaude et froide). La première famille exprimait de larges différences phénotypiques entre les deux environnements tandis que la seconde ne montrait pas de différence significative. La transmission des polymorphismes génétiques a été étudiée au stade de la graine. Quatre cartes génétiques parentales couvrant 66 à 78 % du génome ont été construites. Aucun effet de sélection n'a été mis en évidence aux différents locus étudiés. L'environnement maternel n'induirait donc que des effets de sélection génotypique relativement faibles durant les stades de la reproduction. Les performances des descendants seraient principalement affectées par une mémoire épigénétique durable régulée par la température et la photopériode régnant durant la production des graines

    Harnessing evolutionary toxins for signaling: Reactive oxygen species, nitric oxide and hydrogen sulfide in plant cell regulation

    Get PDF
    © 2017 Hancock. During the early periods of evolution, as well as in niche environments today, organisms have had to learn to tolerate the presence of many reactive compounds, such as reactive oxygen species, nitric oxide, and hydrogen sulfide. It is now known that such compounds are instrumental in the signaling processes in plant cells. There are enzymes which can make them, while downstream of their signaling pathways are coming to light. These include the production of cGMP, the activation of MAP kinases and transcription factors, and the modification of thiol groups on many proteins. However, organisms have also had to tolerate other reactive compounds such as ammonia, methane, and hydrogen gas, and these too are being found to have profound effects on signaling in cells. Before a holistic view of how such signaling works, the full effects and interactions of all such reactive compounds needs to be embraced. A full understanding will be beneficial to both agriculture and future therapeutic strategies

    The Cys-Arg/N-end rule pathway is a general sensor of abiotic stress in flowering plants

    Get PDF
    Abiotic stresses impact negatively on plant growth, profoundly affecting yield and quality of crops. Although much is known about plant responses, very little is understood at the molecular level about the initial sensing of environmental stress. In plants, hypoxia (low oxygen, which occurs during flooding) is directly sensed by the Cys-Arg/N-end rule pathway of ubiquitin-mediated proteolysis, through oxygen-dependent degradation of group VII Ethylene Response Factor transcription factors (ERFVIIs) via amino-terminal (Nt-) cysteine [1, 2]. Using Arabidopsis (Arabidopsis thaliana) and barley (Hordeum vulgare), we show that the pathway regulates plant responses to multiple abiotic stresses. In Arabidopsis, genetic analyses revealed that response to these stresses is controlled by N-end rule regulation of ERFVII function. Oxygen sensing via the Cys-Arg/N-end rule in higher eukaryotes is linked through a single mechanism to nitric oxide (NO) sensing [3, 4]. In plants, the major mechanism of NO synthesis is via NITRATE REDUCTASE (NR), an enzyme of nitrogen assimilation [5]. Here, we identify a negative relationship between NR activity and NO levels and stabilization of an artificial Nt-Cys substrate and ERFVII function in response to environmental changes. Furthermore, we show that ERFVIIs enhance abiotic stress responses via physical and genetic interactions with the chromatin-remodeling ATPase BRAHMA. We propose that plants sense multiple abiotic stresses through the Cys-Arg/N-end rule pathway either directly (via oxygen sensing) or indirectly (via NO sensing downstream of NR activity). This single mechanism can therefore integrate environment and response to enhance plant survival

    The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)

    Get PDF
    The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora
    corecore