100 research outputs found

    Open-source mapping and services for Web-based land-cover validation

    Get PDF
    Monitoring land-cover changes on sites of conservation importance allows environmental problems to be detected, solutions to be developed and the effectiveness of actions to be assessed. However, the remoteness of many sites or a lack of resources means these data are frequently not available. Remote sensing may provide a solution, but large-scale mapping and change detection may not be appropriate, necessitating site-level assessments. These need to be easy to undertake, rapid and cheap. We present an example of a Web-based solution based on free and open-source software and standards (including PostGIS, OpenLayers, Web Map Services, Web Feature Services and GeoServer) to support assessments of land-cover change (and validation of global land-cover maps). Authorised users are provided with means to assess land-cover visually and may optionally provide uncertainty information at various levels: from a general rating of their confidence in an assessment to a quantification of the proportions of land-cover types within a reference area. Versions of this tool have been developed for the TREES-3 initiative (Simonetti, Beuchle and Eva, 2011). This monitors tropical land-cover change through ground-truthing at latitude / longitude degree confluence points, and for monitoring of change within and around Important Bird Areas (IBAs) by Birdlife International and the Royal Society for the Protection of Birds (RSPB). In this paper we present results from the second of these applications. We also present further details on the potential use of the land-cover change assessment tool on sites of recognised conservation importance, in combination with NDVI and other time series data from the eStation (a system for receiving, processing and disseminating environmental data). We show how the tool can be used to increase the usability of earth observation data by local stakeholders and experts, and assist in evaluating the impact of protection regimes on land-cover change

    Inland surface waters in protected areas globally:Current coverage and 30-year trends

    Get PDF
    Inland waters are unique ecosystems offering services and habitat resources upon which many species depend. Despite the importance of, and threats to, inland water, global assessments of protected area (PA) coverage and trends have focused on land habitats or have assessed land and inland waters together. We here provide the first assessment of the level of protection of inland open surface waters and their trends (1984–2015) within PAs for all countries, using a globally consistent, high-resolution (30 m) and validated dataset on permanent and seasonal surface waters based on Landsat images. Globally, 15% of inland surface waters are covered by PAs with mapped boundaries. Estimated inland water protection increases to 16.4% if PAs with reported area but delineated only as points are included as circular buffers. These coverage estimates slightly exceed the comparable figure for land but fall below the 17% goal of the Convention on Biological Diversity’s Aichi Target 11 for 2020. Protection levels are very uneven across countries, half of which do not yet meet the 17% target. The lowest coverage of surface water by PAs (<5%) was found in Africa and in parts of Asia. There was a global trend of permanent water losses and seasonal water gains within PAs, concomitant with an increase of both water types outside PAs. In 38% of countries, PAs lost over 5% of permanent water. Global protection targets for inland waters may well be met by 2020, but much stronger efforts are required to ensure their effective conservation, which will depend not only on sound PA governance and management but also on the sustainable use of water resources outside PAs. Given the pressures on water in a rapidly changing world, integrated management planning of water resources involving multiple sectors and entire basins is therefore necessary

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global groundsourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.EEA Santa CruzFil: Cazzolla Gatti, Roberto. Purdue University. Department of Forestry and Natural Resources; Estados UnidosFil: Cazzolla Gatti, Roberto. University of Bologna. Department of Biological, Geological, and Environmental Sciences.Alma Mater Studiorum; ItaliaFil: Cazzolla Gatti, Roberto. Tomsk State University. Biological Institute; Rusia.Fil: Reichd, Peter B. University of Minnesota. Department of Forest Resources; Estados UnidosFil: Reichd, Peter B. University of Michigan. Institute for Global Change Biology and School for Environment and Sustainability; Estados UnidosFil: Reichd, Peter B. Western Sydney University. Hawkesbury Institute for the Environment; Australia.Fil: Gamarra, Javier G. P. FAO. Forestry Department; ItaliaFil: Crowtherh, Tom. Institute of Integrative Biology; SuizaFil: Hui, Cang. Stellenbosch University. iCentre for Invasion Biology. Department of Mathematical Sciences; SudáfricaFil: Hui, Cang. African Institute for Mathematical Sciences. Mathematical Biology Unit; SudáfricaFil: Morera, Albert. University of Lleida. Department of Crop and Forest Sciences; EspañaFil: Morera, Albert. Joint Research Unit CTFC–AGROTECNIO–CERCA; EspañaFil: Bastin, Jean-Francois. University of Liege. TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech; BélgicaFil: de-Miguel, Sergio. University of Lleida. Department of Crop and Forest Sciences; EspañaFil: de-Miguel, Sergio. Joint Research Unit CTFC–AGROTECNIO–CERCA; EspañaFil: Jan Nabuurs, Gert. Wageningen University. Research Forest Ecology and Forest Management Group; Países BajosFil: Svenning, Jens -Christian. Aarhus University. Center for Biodiversity Dynamics in a Changing World (BIOCHANGE). Department of Biology; DinamarcaFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Liang, Jingjing. Purdue University. Department of Forestry and Natural Resources; Estados Unido

    The number of tree species on Earth

    Get PDF
    One of the most fundamental questions in ecology is how many species inhabit the Earth. However, due to massive logistical and financial challenges and taxonomic difficulties connected to the species concept definition, the global numbers of species, including those of important and well-studied life forms such as trees, still remain largely unknown. Here, based on global ground-sourced data, we estimate the total tree species richness at global, continental, and biome levels. Our results indicate that there are ∼73,000 tree species globally, among which ∼9,000 tree species are yet to be discovered. Roughly 40% of undiscovered tree species are in South America. Moreover, almost one-third of all tree species to be discovered may be rare, with very low populations and limited spatial distribution (likely in remote tropical lowlands and mountains). These findings highlight the vulnerability of global forest biodiversity to anthropogenic changes in land use and climate, which disproportionately threaten rare species and thus, global tree richness.Additional co-authors: Junho Lee, Jun Zhu, Jinyun Fang, Douglass F. Jacobs, Bryan Pijanowski, Arindam Banerjee, Robert A. Giaquinto, Giorgio Alberti, Angelica Maria Almeyda Zambrano, Esteban Alvarez-Davila, Alejandro Araujo-Murakami, Valerio Avitabile, Gerardo A. Aymard, Radomir Balazy, Chris Baraloto, Jorcely G. Barroso, Meredith L. Bastian, Philippe Birnbaum, Robert Bitariho, Jan Bogaert, Frans Bongers, Olivier Bouriaud, Pedro H. S. Brancalion, Francis Q. Brearley, Eben North Broadbent, Filippo Bussotti, Wendeson Castro da Silva, Ricardo Gomes César, Goran Češljar, Víctor Chama Moscoso, Han Y. H. Chen, Emil Cienciala, Connie J. Clark, David A. Coomes, Selvadurai Dayanandan, Mathieu Decuyper, Laura E. Dee, Jhon Del Aguila Pasquel, Géraldine Derroire, Marie Noel Kamdem Djuikouo, Tran Van Do, Jiri Dolezal, Ilija Đ. Đorđević, Julien Engel, Tom M. Fayle, Ted R. Feldpausch, Jonas K. Fridman, David J. Harris, Andreas Hemp, Geerten Hengeveld, Bruno Herault, Martin Herold, Thomas Ibanez, Andrzej M. Jagodzinski, Bogdan Jaroszewicz, Vivian Kvist Johannsen, Tommaso Jucker, Ahto Kangur, Victor N. Karminov, Kuswata Kartawinata, Deborah K. Kennard, Sebastian Kepfer-Rojas, Gunnar Keppel, Mohammed Latif Khan, Pramod Kumar Khare, Timothy J. Kileen, Hyun Seok Kim, Henn Korjus, Amit Kumar, Ashwani Kumar, Diana Laarmann, Nicolas Labrière, Mait Lang, Simon L. Lewis, Natalia Lukina, Brian S. Maitner, Yadvinder Malhi, Andrew R. Marshall, Olga V. Martynenko, Abel L. Monteagudo Mendoza, Petr V. Ontikov, Edgar Ortiz-Malavasi, Nadir C. Pallqui Camacho, Alain Paquette, Minjee Park, Narayanaswamy Parthasarathy, Pablo Luis Peri, Pascal Petronelli, Sebastian Pfautsch, Oliver L. Phillips, Nicolas Picard, Daniel Piotto, Lourens Poorter, John R. Poulsen, Hans Pretzsch, Hirma Ramírez-Angulo, Zorayda Restrepo Correa, Mirco Rodeghiero, Rocío Del Pilar Rojas Gonzáles, Samir G. Rolim, Francesco Rovero, Ervan Rutishauser, Purabi Saikia, Christian Salas-Eljatib, Dmitry Schepaschenko, Michael Scherer-Lorenzen, Vladimír Šebeň, Marcos Silveira, Ferry Slik, Bonaventure Sonké, Alexandre F. Souza, Krzysztof Jan Stereńczak, Miroslav Svoboda, Hermann Taedoumg, Nadja Tchebakova, John Terborgh, Elena Tikhonova, Armando Torres-Lezama, Fons van der Plas, Rodolfo Vásquez, Helder Viana, Alexander C. Vibrans, Emilio Vilanova, Vincent A. Vos, Hua-Feng Wang, Bertil Westerlund, Lee J. T. White, Susan K. Wiser, Tomasz Zawiła-Niedźwiecki, Lise Zemagho, Zhi-Xin Zhu, Irié C. Zo-Bi, and Jingjing Lian

    Dominance and rarity in tree communities across the globe: Patterns, predictors and threats

    Get PDF
    Aim: Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species? Location: Global. Time period: 1990–2017. Major taxa studied: Trees. Methods: We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. Results: Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large‐scale land degradation. Main conclusions: By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species should be considered in large‐scale management and conservation practices

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale.2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship.3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive.4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity–ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions

    Above-ground biomass and structure of 260 African tropical forests.

    Get PDF
    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha⁻¹ (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha⁻¹) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha⁻¹ greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus-AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes

    Evenness mediates the global relationship between forest productivity and richness

    Get PDF
    1. Biodiversity is an important component of natural ecosystems, with higher species richness often correlating with an increase in ecosystem productivity. Yet, this relationship varies substantially across environments, typically becoming less pronounced at high levels of species richness. However, species richness alone cannot reflect all important properties of a community, including community evenness, which may mediate the relationship between biodiversity and productivity. If the evenness of a community correlates negatively with richness across forests globally, then a greater number of species may not always increase overall diversity and productivity of the system. Theoretical work and local empirical studies have shown that the effect of evenness on ecosystem functioning may be especially strong at high richness levels, yet the consistency of this remains untested at a global scale. 2. Here, we used a dataset of forests from across the globe, which includes composition, biomass accumulation and net primary productivity, to explore whether productivity correlates with community evenness and richness in a way that evenness appears to buffer the effect of richness. Specifically, we evaluated whether low levels of evenness in speciose communities correlate with the attenuation of the richness–productivity relationship. 3. We found that tree species richness and evenness are negatively correlated across forests globally, with highly speciose forests typically comprising a few dominant and many rare species. Furthermore, we found that the correlation between diversity and productivity changes with evenness: at low richness, uneven communities are more productive, while at high richness, even communities are more productive. 4. Synthesis. Collectively, these results demonstrate that evenness is an integral component of the relationship between biodiversity and productivity, and that the attenuating effect of richness on forest productivity might be partly explained by low evenness in speciose communities. Productivity generally increases with species richness, until reduced evenness limits the overall increases in community diversity. Our research suggests that evenness is a fundamental component of biodiversity– ecosystem function relationships, and is of critical importance for guiding conservation and sustainable ecosystem management decisions
    corecore