104 research outputs found

    cAMP up-regulates IL-4 and IL-5 production from activated CD4+ T cells while decreasing IL-2 release and NF-AT induction

    Get PDF
    Seven days after activation with concanavalin A and irradiated spleen cells, murine CD4+ T cells were re-stimulated with lonomycin and phorbol 12-myristate 13-acetate (PMA). IL-2 and IL-4 were determined in the supernatant. When cholera toxin, forskolin together with phosphodlesterase inhibitors or dibutyryl-cAMP were added at the time of re-stimulation, a dose-dependent increase of IL-4 and IL-5 release was noted. IL-2 was down-regulated as reported before. The up-regulatlon of IL-4 and the down-regulation of IL-2 correlated with an increase of IL-4 mRNA and a decrease of IL-2 mRNA as determined by semi-quantitative reverse tratucriptase polymerase chain reaction. Similar results were found with prostaglandin E2 using PMA and ionomycin or plate-bound anti-CD3 antibody as re-stimulants. These results suggest that, in activated CD4+ T cells, cAMP-elevating agents induce a switch of lymphokine production towards a Th-like phenotype through regulation at the transcriptional level. This is supported by the fact that complex formation between a synthetic nuclear factor of activated T cells (NF-AT) binding site from the IL-2 promoter and nuclear extracts was decreased when cholera toxin was added to re-activated CD4+ T cells, suggesting that cholera toxin and cAMP down-regulate IL-2 expression via decreased NF-AT binding. Finally, since IL-4 has been reported to amplify IL-4 release from activated CD4+ T cells, the autoinduction of IL-4 may very well function via cAM

    DC-SIGN–mediated Infectious Synapse Formation Enhances X4 HIV-1 Transmission from Dendritic Cells to T Cells

    Get PDF
    Dendritic cells (DCs) are essential for the early events of human immunodeficiency virus (HIV) infection. Model systems of HIV sexual transmission have shown that DCs expressing the DC-specific C-type lectin DC-SIGN capture and internalize HIV at mucosal surfaces and efficiently transfer HIV to CD4+ T cells in lymph nodes, where viral replication occurs. Upon DC–T cell clustering, internalized HIV accumulates on the DC side at the contact zone (infectious synapse), between DCs and T cells, whereas HIV receptors and coreceptors are enriched on the T cell side. Viral concentration at the infectious synapse may explain, at least in part, why DC transmission of HIV to T cells is so efficient

    A novel role for the root cap in phosphate uptake and homeostasis

    Get PDF
    The root cap has a fundamental role in sensing environmental cues as well as regulating root growth via altered meristem activity. Despite this well-established role in the control of developmental processes in roots, the root cap's function in nutrition remains obscure. Here, we uncover its role in phosphate nutrition by targeted cellular inactivation or phosphate transport complementation in Arabidopsis, using a transactivation strategy with an innovative high-resolution real-time P-33 imaging technique. Remarkably, the diminutive size of the root cap cells at the root-to-soil exchange surface accounts for a significant amount of the total seedling phosphate uptake (approximately 20%). This level of Pi absorption is sufficient for shoot biomass production (up to a 180% gain in soil), as well as repression of Pi starvation-induced genes. These results extend our understanding of this important tissue from its previously described roles in environmental perception to novel functions in mineral nutrition and homeostasis control

    A phylogenetic framework of the legume genus Aeschynomene for comparative genetic analysis of the Nod-dependent and Nod-independent symbioses

    Full text link
    Background : Among semi-aquatic species of the legume genus Aeschynomene, some have the property of being nodulated by photosynthetic Bradyrhizobium lacking the nodABC genes necessary for the synthesis of Nod factors. Knowledge of the specificities underlying this Nod-independent symbiosis has been gained from the model legume Aeschynomene evenia but our understanding remains limited due to the lack of comparative genetics with related taxa using a Nod factor-dependent process. To fill this gap, we combined different approaches to perform a thorough comparative analysis in the genus Aeschynomene. Results: This study significantly broadened previous taxon sampling, including in allied genera, in order to construct a comprehensive phylogeny. In the phylogenetic tree, five main lineages were delineated, including a novel lineage, the Nod-independent clade and another one containing a polytomy that comprised several Aeschynomene groups and all the allied genera. This phylogeny was matched with data on chromosome number, genome size and low-copy nuclear gene sequences to reveal the diploid species and a polytomy containing mostly polyploid taxa. For these taxa, a single allopolyploid origin was inferred and the putative parental lineages were identified. Finally, nodulation tests with different Bradyrhizobium strains revealed new nodulation behaviours and the diploid species outside of the Nod-independent clade were compared for their experimental tractability and genetic diversity. Conclusions: The extended knowledge of the genetics and biology of the different lineages sheds new light of the evolutionary history of the genus Aeschynomene and they provide a solid framework to exploit efficiently the diversity encountered in Aeschynomene legumes. Notably, our backbone tree contains all the species that are diploid and it clarifies the genetic relationships between the Nod-independent clade and the Nod-dependent lineages. This study enabled the identification of A. americana and A. patula as the most suitable species to undertake a comparative genetic study of the Nod-independent and Nod-dependent symbioses

    Maturation of Dendritic Cells Is Accompanied by Rapid Transcriptional Silencing of Class II Transactivator (Ciita) Expression

    Get PDF
    Cell surface expression of major histocompatibility complex class II (MHCII) molecules is increased during the maturation of dendritic cells (DCs). This enhances their ability to present antigen and activate naive CD4+ T cells. In contrast to increased cell surface MHCII expression, de novo biosynthesis of MHCII mRNA is turned off during DC maturation. We show here that this is due to a remarkably rapid reduction in the synthesis of class II transactivator (CIITA) mRNA and protein. This reduction in CIITA expression occurs in human monocyte-derived DCs and mouse bone marrow–derived DCs, and is triggered by a variety of different maturation stimuli, including lipopolysaccharide, tumor necrosis factor α, CD40 ligand, interferon α, and infection with Salmonella typhimurium or Sendai virus. It is also observed in vivo in splenic DCs in acute myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalitis. The arrest in CIITA expression is the result of a transcriptional inactivation of the MHC2TA gene. This is mediated by a global repression mechanism implicating histone deacetylation over a large domain spanning the entire MHC2TA regulatory region

    Genetic Structure of Human A/H1N1 and A/H3N2 Influenza Virus on Corsica Island: Phylogenetic Analysis and Vaccine Strain Match, 2006–2010

    Get PDF
    Background: The aim of this study was to analyse the genetic patterns of Hemagglutinin (HA) genes of influenza A strains circulating on Corsica Island during the 2006-2009 epidemic seasons and the 2009-2010 pandemic season. [br/] Methods: Nasopharyngeal samples from 371 patients with influenza-like illness (ILI) were collected by General Practitioners (GPs) of the Sentinelles Network through a randomised selection routine. [br/] Results: Phylogenetic analysis of HA revealed that A/H3N2 strains circulating on Corsica were closely related to the WHO recommended vaccine strains in each analyzed season (2006-2007 to 2008-2009). Seasonal Corsican influenza A/H1N1 isolated during the 2007-2008 season had drifted towards the A/Brisbane/59/2007 lineage, the A/H1N1 vaccine strain for the 2008-2009 season. The A/H1N1 2009 (A/H1N1pdm) strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E. The percentages of the perfect match vaccine efficacy, estimated by using the p(epitope) model, against influenza viruses circulating on Corsica Island varied substantially across the four seasons analyzed, and tend to be highest for A/H1N1 compared with A/H3N2 vaccines, suggesting that cross-immunity seems to be stronger for the H1 HA gene. [br/] Conclusion: The molecular analysis of the HA gene of influenza viruses that circulated on Corsica Island between 2006-2010 showed for each season the presence of a dominant lineage characterized by at least one fixed mutation. The A/H3N2 and A/H1N1pdm isolates were characterized by multiples fixation at antigenic sites. The fixation of specific mutations at each outbreak could be explained by the combination of a neutral phenomenon and a founder effect, favoring the presence of a dominant lineage in a closed environment such as Corsica Island
    • …
    corecore