67 research outputs found

    Sphingolipid Long-Chain Base Hydroxylation Is Important for Growth and Regulation of Sphingolipid Content and Composition in \u3ci\u3eArabidopsis\u3c/i\u3e

    Get PDF
    Sphingolipids are structural components of endomembranes and function through their metabolites as bioactive regulators of cellular processes such as programmed cell death. A characteristic feature of plant sphingolipids is their high content of trihydroxy long-chain bases (LCBs) that are produced by the LCB C-4 hydroxylase. To determine the functional significance of trihydroxy LCBs in plants, T-DNA double mutants and RNA interference suppression lines were generated for the two Arabidopsis thaliana LCB C-4 hydroxylase genes Sphingoid Base Hydroxylase1 (SBH1) and SBH2. These plants displayed reductions in growth that were dependent on the content of trihydroxy LCBs in sphingolipids. Double sbh1 sbh2 mutants, which completely lacked trihydroxy LCBs, were severely dwarfed, did not progress from vegetative to reproductive growth, and had enhanced expression of programmed cell death associated–genes. Furthermore, the total content of sphingolipids on a dry weight basis increased as the relative amounts of trihydroxy LCBs decreased. In trihydroxy LCB–null mutants, sphingolipid content was ~2.5-fold higher than that in wild-type plants. Increases in sphingolipid content resulted from the accumulation of molecular species with C16 fatty acids rather than with very-long-chain fatty acids, which are more commonly enriched in plant sphingolipids, and were accompanied by decreases in amounts of C16-containing species of chloroplast lipids. Overall, these results indicate that trihydroxy LCB synthesis plays a central role in maintaining growth and mediating the total content and fatty acid composition of sphingolipids in plants

    Production of high levels of poly-3-hydroxybutyrate in plastids of Camelina sativa seeds

    Get PDF
    Poly-3-hydroxybutyrate (PHB) production in plastids of Camelina sativa seeds was investigated by comparing levels of polymer produced upon transformation of plants with five different binary vectors containing combinations of five seed-specific promoters for expression of transgenes. Genes encoding PHB biosynthetic enzymes were modified at the N-terminus to encode a plastid targeting signal. PHB levels of up to 15% of the mature seed weight were measured in single sacrificed T1 seeds with a genetic construct containing the oleosin and glycinin promoters. A more detailed analysis of the PHB production potential of two of the best performing binary vectors in a Camelina line bred for larger seed size yielded lines containing up to 15% polymer in mature T2 seeds. Transmission electron microscopy showed the presence of distinct granules of PHB in the seeds. PHB production had varying effects on germination, emergence and survival of seedlings. Once true leaves formed, plants grew normally and were able to set seeds. PHB synthesis lowered the total oil but not the protein content of engineered seeds. A change in the oil fatty acid profile was also observed. High molecular weight polymer was produced with weight-averaged molecular weights varying between 600 000 and 1 500 000, depending on the line. Select lines were advanced to later generations yielding a line with 13.7% PHB in T4 seeds. The levels of polymer produced in this study are the highest reported to date in a seed and are an important step forward for commercializing an oilseed-based platform for PHB production

    Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in \u3ci\u3eArabidopsis thaliana\u3c/i\u3e

    Get PDF
    Sphingolipid synthesis is initiated by condensation of Ser with palmitoyl-CoA producing 3-ketodihydrosphinganine (3-KDS), which is reduced by a 3-KDS reductase to dihydrosphinganine. Ser palmitoyltransferase is essential for plant viability. Arabidopsis thaliana contains two genes (At3g06060/TSC10A and At5g19200/TSC10B) encoding proteins with significant similarity to the yeast 3-KDS reductase, Tsc10p. Heterologous expression in yeast of either Arabidopsis gene restored 3-KDS reductase activity to the yeast tsc10D mutant, confirming both as bona fide 3-KDS reductase genes. Consistent with sphingolipids having essential functions in plants, double mutant progeny lacking both genes were not recovered from crosses of single tsc10A and tsc10B mutants. Although the 3-KDS reductase genes are functionally redundant and ubiquitously expressed in Arabidopsis, 3-KDS reductase activity was reduced to 10% of wild-type levels in the loss-of-function tsc10a mutant, leading to an altered sphingolipid profile. This perturbation of sphingolipid biosynthesis in the Arabidopsis tsc10a mutant leads an altered leaf ionome, including increases in Na, K, and Rb and decreases in Mg, Ca, Fe, and Mo. Reciprocal grafting revealed that these changes in the leaf ionome are driven by the root and are associated with increases in root suberin and alterations in Fe homeostasis

    Ethnic differences in dissatisfaction with sexual life in patients with type 2 diabetes in a Swedish town

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first aim of this study was to analyze whether self-reported satisfaction with one's sexual life was associated with ethnicity (Swedish and Assyrian/Syrian) in patients with type 2 diabetes. The second was to study whether the association between satisfaction with one's sexual life and ethnicity remained after controlling for possible confounders such as marital status, HbA1c, medication, and presence of other diseases.</p> <p>Methods</p> <p>This cross-sectional, questionnaire-based study was conducted at four primary health care centers in the Swedish town of Södertälje. A total of 354 persons (173 ethnic Assyrians/Syrians and 181 ethnic Swedes) participated.</p> <p>Results</p> <p>The total prevalence of self-reported dissatisfaction with one's sexual life in both groups was 49%. No significant ethnic differences were found in the outcome. In the final model, regardless of ethnicity, the odds ratio (OR) for self-reported dissatisfaction with one's sexual life in those ≥ 70 years old was 2.52 (95% CI 1.33-4.80). Among those living alone or with children, the OR was more than three times higher than for married or cohabiting individuals (OR = 3.10, 95% CI 1.60-6.00). Those with other diseases had an OR 1.89 times (95% CI 1.10-3.40) higher than those without other diseases.</p> <p>Conclusions</p> <p>The findings demonstrate that almost half of participants were dissatisfied with their sexual life and highlight the importance of sexual life to people with type 2 diabetes. This factor should not be ignored in clinical evaluations. Moreover, the findings demonstrate that it is possible to include questions on sexual life in investigations of patients with type 2 diabetes and even in other health-related, questionnaire studies, despite the sensitivity of the issue of sexuality.</p

    The role of leadership in salespeople’s price negotiation behavior

    Get PDF
    Salespeople assume a key role in defending firms’ price levels in price negotiations with customers. The degree to which salespeople defend prices should critically depend upon their leaders’ influence. However, the influence of leadership on salespeople’s price defense behavior is barely understood, conceptually or empirically. Therefore, building on social learning theory, the authors propose that salespeople might adopt their leaders’ price defense behavior given a transformational leadership style. Furthermore, drawing on the contingency leadership perspective, the authors argue that this adoption fundamentally depends on three variables deduced from the motivation–ability–opportunity (MAO) framework, that is, salespeople’s learning motivation, negotiation efficacy, and perceived customer lenience. Results of a multi-level model using data from 92 salespeople and 264 salesperson–customer interactions confirm these predictions. The first to explore contingencies of salespeople’s adoption of their transformational leaders’ price negotiation behaviors, this study extends marketing theory and provides actionable guidance to practitioners

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe

    Sphingolipid Long-Chain Base Hydroxylation Is Important for Growth and Regulation of Sphingolipid Content and Composition in \u3ci\u3eArabidopsis\u3c/i\u3e

    Get PDF
    Sphingolipids are structural components of endomembranes and function through their metabolites as bioactive regulators of cellular processes such as programmed cell death. A characteristic feature of plant sphingolipids is their high content of trihydroxy long-chain bases (LCBs) that are produced by the LCB C-4 hydroxylase. To determine the functional significance of trihydroxy LCBs in plants, T-DNA double mutants and RNA interference suppression lines were generated for the two Arabidopsis thaliana LCB C-4 hydroxylase genes Sphingoid Base Hydroxylase1 (SBH1) and SBH2. These plants displayed reductions in growth that were dependent on the content of trihydroxy LCBs in sphingolipids. Double sbh1 sbh2 mutants, which completely lacked trihydroxy LCBs, were severely dwarfed, did not progress from vegetative to reproductive growth, and had enhanced expression of programmed cell death associated–genes. Furthermore, the total content of sphingolipids on a dry weight basis increased as the relative amounts of trihydroxy LCBs decreased. In trihydroxy LCB–null mutants, sphingolipid content was ~2.5-fold higher than that in wild-type plants. Increases in sphingolipid content resulted from the accumulation of molecular species with C16 fatty acids rather than with very-long-chain fatty acids, which are more commonly enriched in plant sphingolipids, and were accompanied by decreases in amounts of C16-containing species of chloroplast lipids. Overall, these results indicate that trihydroxy LCB synthesis plays a central role in maintaining growth and mediating the total content and fatty acid composition of sphingolipids in plants
    corecore