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Sphingolipid Long-Chain Base Hydroxylation Is Important for
Growth and Regulation of Sphingolipid Content and
Composition in Arabidopsis W

Ming Chen,1 Jonathan E. Markham,1 Charles R. Dietrich, Jan G. Jaworski, and Edgar B. Cahoon2

Donald Danforth Plant Science Center, Saint Louis, Missouri 63132

Sphingolipids are structural components of endomembranes and function through their metabolites as bioactive regulators

of cellular processes such as programmed cell death. A characteristic feature of plant sphingolipids is their high content of

trihydroxy long-chain bases (LCBs) that are produced by the LCB C-4 hydroxylase. To determine the functional significance

of trihydroxy LCBs in plants, T-DNA double mutants and RNA interference suppression lines were generated for the two

Arabidopsis thaliana LCB C-4 hydroxylase genes Sphingoid Base Hydroxylase1 (SBH1) and SBH2. These plants displayed

reductions in growth that were dependent on the content of trihydroxy LCBs in sphingolipids. Double sbh1 sbh2 mutants,

which completely lacked trihydroxy LCBs, were severely dwarfed, did not progress from vegetative to reproductive growth,

and had enhanced expression of programmed cell death associated–genes. Furthermore, the total content of sphingolipids

on a dry weight basis increased as the relative amounts of trihydroxy LCBs decreased. In trihydroxy LCB–null mutants,

sphingolipid content was ;2.5-fold higher than that in wild-type plants. Increases in sphingolipid content resulted from the

accumulation of molecular species with C16 fatty acids rather than with very-long-chain fatty acids, which are more

commonly enriched in plant sphingolipids, and were accompanied by decreases in amounts of C16-containing species of

chloroplast lipids. Overall, these results indicate that trihydroxy LCB synthesis plays a central role in maintaining growth and

mediating the total content and fatty acid composition of sphingolipids in plants.

INTRODUCTION

Sphingolipids are structurally diverse molecules that are major

components of the endomembrane system and have recently

been estimated to compose >40%of plasmamembrane lipids in

plants (Sperling et al., 2005). Not only do sphingolipids provide

structural integrity to membranes, they are also believed to

contribute to the organization of membrane microdomains or

lipid rafts that contain proteins such as glycosylphosphatidyl-

inositol-anchored proteins, which function in cell surface–related

activities including cell wall deposition (Mongrand et al., 2004;

Borner et al., 2005). Furthermore, sphingolipids function through

their metabolites as regulators of key cellular and physiological

processes in plants. For example, the ceramide component of

sphingolipids has been shown to function as a mediator of

programmed cell death (PCD) (Liang et al., 2003), and the

sphingolipid long-chain base (LCB) phosphates sphingosine-

and phytosphingosine-1-phosphate have been implicated as

signaling molecules in abscisic acid–dependent guard cell clo-

sure (Ng et al., 2001; Coursol et al., 2003, 2005).

More than 200 different sphingolipid molecules occur in plants

(Markham et al., 2006; Markham and Jaworski, 2007). These

molecules can differ in the composition of their head groups,

degree of hydroxylation, and numbers and positions of double

bonds. The functional significance of this immense structural

heterogeneity of plant sphingolipids has only begun to be

addressed. For example, increases in relative amounts of cis

C-8 unsaturated LCBs have been shown to enhance aluminum

tolerance in Arabidopsis thaliana (Ryan et al., 2007). One char-

acteristic feature of sphingolipids is the high degree of hydrox-

ylation of the fatty acids and LCBs that compose their ceramide

backbone (Lynch and Dunn, 2004). The fatty acids of plant

sphingolipids typically are a mixture of C16 and very-long-chain

(C20 to C26) moieties that contain an a- or C-2 hydroxy group

(Lynch and Dunn, 2004). LCBs, which are derived from the

condensation of palmitoyl-CoA and Ser, contain 18 carbon

atoms and up to three hydroxyl groups. The C-1 and C-3

hydroxyl groups arise from the Ser and palmitoyl-CoA precur-

sors, respectively, whereas the third hydroxyl group at the C-4

position is added following synthesis of the LCB. The C-1 hy-

droxyl group can be substituted with polar residues to form

complex sphingolipids. In plants, these include glucosylcer-

amides (GlcCers) and the more abundant glycosylinositolphos-

phoceramides (GIPCs) (Kaul and Lester, 1978). While dihydroxy

LCBs, which lack the C-4 hydroxyl group, are typically more

enriched in GlcCers than in GIPCs, trihydroxy LCBs predominate

in both classes in Arabidopsis and compose nearly 90% of the

LCBs in the total sphingolipid extract inArabidopsis leaves (Chen

et al., 2006; Markham et al., 2006).
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In Saccharomyces cerevisiae, the C-4 hydroxyl group is intro-

duced by the activity of a diiron-oxo–type hydroxylase encoded

by the SUR2 (also known as SYR2) gene (Cliften et al., 1996;

Haak et al., 1997; Grilley et al., 1998). A similar enzyme occurs in

plants, and the two LCB C-4 hydroxylase genes (At1g69640 and

At1g14290; Figure 1) in Arabidopsis have been shown to restore

trihydroxy LCBbiosynthetic ability toS. cerevisiae sur2Dmutants

(Sperling et al., 2001). In mammals, the C-4 hydroxyl group in

LCBs arises from the bifunctional desaturase/hydroxylase ac-

tivity of the DES2 (Degenerative Spermatocyte2) polypeptide,

which is more distantly related to the S. cerevisiae and plant C-4

hydroxylases (Ternes et al., 2002; Omae et al., 2004).

The significance of sphingolipid LCB C-4 hydroxylation has

been studied in S. cerevisiae and more recently in the filamen-

tous fungus Aspergillus nidulans (Li et al., 2007). S. cerevisiae

mutants that lack the LCB C-4 hydroxyl group do not display

growth phenotypes, indicating that this hydroxyl moiety is not an

essential structural feature of S. cerevisiae sphingolipids (Haak

et al., 1997). Loss of LCB C-4 hydroxylation, however, does

confer resistance to the Pseudomonas syringae toxin syringo-

mycin (Cliften et al., 1996; Grilley et al., 1998). This resistance

apparently arises from alterations in the physical properties of

the plasma membrane that mitigate the channel-forming activity

of syringomycin (Idkowiak-Baldys et al., 2004). In contrast withS.

cerevisiae, LCB C-4 hydroxylation is essential for the viability of

A. nidulans, and trihydroxy LCBs have been shown to contribute

to cell wall formation and the transition from asexual to sexual

growth in this organism (Li et al., 2007). In mammals, trihydroxy

LCBs are relatively minor components of sphingolipids that are

formed by the dual activity of DES2 (Ternes et al., 2002; Omae

et al., 2004). As a result, the function of trihydroxy LCBs cannot

be dissected from that of C-4 unsaturated LCBs in mammals.

Prior to the studies described here, the functional significance

of LCB C-4 hydroxylation in plants had not been well character-

ized. A recent report, for example, showed that RNA interference

(RNAi) and antisense downregulation of one of the five LCB C-4

hydroxylase genes of rice (Oryza sativa) result in reduced fertility

(Imamura et al., 2007). However, it was not possible to link this

phenotype with LCB C-4 hydroxylation, because no change in

sphingolipid LCB composition was detected in these plants

(Imamura et al., 2007). To determine the function of LCB C-4

hydroxylation in plants, we have generated double mutants for

the two C-4 hydroxylase genes in Arabidopsis that completely

lack trihydroxy LCBs and have also generated RNAi lines with

intermediate reductions in trihydroxy LCBs. The results pre-

sented here show that LCB C-4 hydroxylation is critical for the

growth and viability of Arabidopsis. The results also show

that synthesis of trihydroxy LCBs plays a central role in the

maintenance of sphingolipid fatty acid composition and total

sphingolipid content in Arabidopsis. A model is presented that

rationalizes the contributions of trihydroxy LCBs to growth and

the regulation of sphingolipid biosynthesis.

RESULTS

Expression of SBH1 and SBH2 and Subcellular Localization

of the SBH1 and SBH2 Polypeptides

Arabidopsis contains two homologs of the S. cerevisiae LCBC-4

hydroxylase, At1g69640 and At1g14290, designated Sphingoid

Base Hydroxylase1 (SBH1) and SBH2, respectively. Each gene

has been shown previously to restore trihydroxy LCB synthesis

when expressed in S. cerevisiae LCB C-4 hydroxylase mutants

(Sperling et al., 2001). The organ-specific expression patterns of

SBH1 and SBH2 were examined as a first step toward address-

ing the possible functional redundancy of these genes. RNA gel

blot analyses indicated that both SBH1 and SBH2 are ubiqui-

tously expressed in Arabidopsis and most highly expressed in

flowers and roots (Figure 2A). Of the two genes, SBH1 is more

highly expressed throughout the Arabidopsis plant. Consistent

with this, higher b-glucuronidase (GUS) activity was detected in

leaves and cotyledons of plants transformed with an SBH1

promoter–GUS fusion compared with those transformed with an

SBH2 promoter–GUS fusion (Figures 2B to 2L).

Although the similarity of expression patterns of SBH1 and

SBH2 suggests redundancy at the organ level, it is possible that

the SBH1 and SBH2 polypeptides reside in different locations

within the cell and contribute, for example, to the hydroxylation of

LCBs for different sphingolipid classes. To address this possi-

bility, SBH1 and SBH2 were fused at their C termini with cyan

fluorescent protein (CFP), and each was transiently expressed in

tobacco (Nicotiana tabacum) leaves. Analyses of the Agrobac-

terium tumefaciens–infiltrated leaves by confocal microscopy

revealed that SBH1 and SBH2 colocalize with a fluorescent

protein marker containing an endoplasmic reticulum (ER) chi-

tinase signal peptide (CSP) and the HDEL ER retention sequence

(CSP-YFP-HDEL) (Chen et al., 2006), but not with the plasma

membrane dye FM4-64. This indicates that both Arabidopsis

LCB C-4 hydroxylases are ER-localized (Figure 3; see Supple-

mental Figure 1 online). Both N- and C-terminal fusions of SBH1

and SBH2with yellow fluorescent protein (YFP) or CFPwere able

to restore C-4 hydroxylation to a S. cerevisiae sur2D mutant

containing a knockout of the LCB C-4 hydroxylase gene, indi-

cating that the hydroxylase fusions retain their enzymatic activ-

ities (see Supplemental Figure 2 online).

Figure 1. Example of a Reaction Catalyzed by LCB C-4 Hydroxylase.

The conversion of dihydroxy LCB sphinganine (d18:0) to trihydroxy LCB

4-OH-sphinganine (or phytosphingosine; t18:0) by the activity of LCB C-4

hydroxylase. Arabidopsis contains two genes, SBH1 (At1g69640) and

SBH2 (At1g14290), that encode distinct LCB C-4 hydroxylase isoforms.
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Overall, the constitutive expression of both LCB C-4 hydrox-

ylase genes in Arabidopsis and the localization of both peptides

in the ER suggest that SBH1 and SBH2 are functionally redun-

dant.

Relative Contributions of SBH1 and SBH2 to LCB

C-4 Hydroxylation

The LCB composition of T-DNA mutants for SBH1 and SBH2

was measured to assess the relative contributions of each

gene to C-4 hydroxylation in Arabidopsis plants. For these

studies, multiple independent T-DNA mutants were obtained

for each gene: (1) for SBH1, SALK_090881, designated sbh1-1,

and SAIL_1292_E09, designated sbh1-2; and (2) for SBH2,

SALK_047916, designated sbh2-1, SALK_032139, designated

sbh2-2, and SALK_024105, designated sbh2-3 (Figure 4A). Each

mutant was determined to be a null allele based on RT-PCR

(Figure 4B). Double mutants for the two SBH genes were

obtained by crossing of sbh1-1 and sbh2-1 and crossing of

sbh1-2 and sbh2-2, followed by self-fertilization of the progeny

from the crosses. As expected, expression of SBH1 and SBH2

was not detected in the double mutants, as determined by RT-

PCR analysis (see Supplemental Figure 3 online).

LCB compositions were measured by HPLC following hydro-

lysis of the total sphingolipid extract and fluorescent derivatiza-

tion of the released LCBs. Initially, the relative content of

trihydroxy and dihydroxy LCBs in the total sphingolipid extract

from different organs of 8-week-old wild-type, sbh1, and sbh2

Figure 2. Gene Expression Analyses of SBH1 and SBH2.

(A)Gene expression of SBH1 and SBH2 in different organs from a wild-type plant (Col-0) as revealed by RNA gel blot analysis. RNA loading in each lane

is indicated by ethidium bromide–stained rRNA. Shown are representative blots from three technical replicates.

(B) to (L) Localization of GUS activity in Arabidopsis plants transformed with SBH1 and SBH2 promoter-GUS fusions.

(B) to (F) Promoter-GUS activities for SBH1.

(B) Ten-day-old seedling grown on MS plates.

(C) Cotyledon.

(D) Emerging young leaf.

(E) Root.

(F) Rosette leaf from a 4-week-old soil-grown plant.

(G) to (L) Promoter-GUS activities for SBH2.

(G) Ten-day-old seedling grown on MS plates.

(H) Cotyledon.

(I) Emerging young leaf.

(J) and (K) Roots.

(L) Rosette leaf from a 4-week-old soil-grown plant.

Bars = 1 mm for (B), (G), (F), and (L) and 500 mm for (C) to (E) and (H) to (K).
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plants was compared. Trihydroxy LCBs, principally in the form

of cis/trans isomers of 4-hydroxy-8-sphingenine (t18:1) and 4

hydroxysphinganine (t18:0), accounted for 80 to 90% of the total

LCBs of sphingolipids in roots, leaves, flowers, stems, and

siliques of wild-type plants (Figure 5A). In the sbh1-1 mutant,

the relative content of trihydroxy LCBswas reduced to 50 to 60%

of the LCBs in sphingolipids in each of the organs analyzed

(Figure 5A). By contrast, reductions in the relative content of

trihydroxy LCBs in the sbh2-1 mutant were limited primarily to

roots, stems, and siliques, with little or no decrease in leaves

compared with wild-type plants (Figure 5A). A similar pattern of

alterations in trihydroxy LCB content was also observed in the

sbh1-2, sbh2-2, and sbh2-3 mutants. The larger contribution of

SBH1 to LCB C-4 hydroxylation in the different organs of

Arabidopsis is consistent with its higher expression throughout

Arabidopsis, as demonstrated by RNA gel blot analyses (Figure

2A). The sbh1-1 sbh2-1 double mutant contained no detectable

amounts of trihydroxy LCBs (Figure 5B) and instead was en-

riched in cis/trans isomers of D8-dihydrosphingenine (d18:1) and

sphinganine (d18:0). This result indicates that the combined

expression of SBH1 and SBH2 accounts for all LCB C-4 hydrox-

ylation in Arabidopsis.

Growth Phenotypes of Arabidopsis sbhMutants

No obvious growth defects were observed when sbh1-1 or

sbh2-1 mutant plants were grown in soil under our standard

growth conditions. However, sbh1-1 sbh2-1 double mutants

displayed severe alterations in growth. Approximately 1/16th of

the F2 progeny obtained by self-fertilization of a sbh1-1+/2 sbh2-

1+/2 plant were markedly smaller than their siblings. Similar

alterations in growth were also observed in a segregating F2

population from crosses of the sbh1-1 or sbh1-2 allele with the

sbh2-1, sbh2-2, or sbh2-3 allele. Double mutants displayed

reduced vigor and usually died before expansion of the true

leaves when grown in soil. In addition to the reduced size, these

plants also developed lesions near the center of their cotyledons

(Figure 6A, arrowhead).

Despite their inability to transition to reproductive growth,

double mutants could be obtained from segregating populations

of progeny from a sbh1-1+/2 sbh2-12/2 parental line. These

plants displayed extended viability when maintained on agar

plates but were nonetheless reduced in size relative to their

siblings, and necrotic lesions were again observed on cotyle-

dons (Figure 6B, arrow). These plants had small, curled leaves

and short petioles that resulted in a compact, epinastic mor-

phology of the rosette (Figures 6C and 6D). The inability to bolt

was also observed in double mutants maintained on plates for 6

weeks ormore, whereaswild-type plants typically boltedwithin 4

weeks under these growth conditions. The addition of trihydroxy

LCB phytosphingosine (t18:0) to the medium at concentrations

of up to 200 mM was unable to restore the growth of sbh1-1

sbh2-1 plants, and higher concentrations of t18:0 were not used

because of its adverse effects on the growth and viability of wild-

type plants (Abbas et al., 1994). However, the growth of sbh1-1

sbh2-1 mutants appeared to be restored to that of wild-type

plants by genetic complementation with a wild-type copy of

SBH1.

Figure 3. Subcellular Localization of SBH1 and SBH2.

(A) Distribution of SBH1-CFP.

(B) Distribution of the ER marker CSP-YFP-HDEL.

(C) Merge of images in (A) and (B), which shows the colocalization of SBH1-CFP with the ER marker.

(D) Distribution of SBH2-CFP.

(E) Distribution of the ER marker CSP-YFP-HDEL.

(F) Merge of images in (D) and (E), which shows the colocalization of SBH2-CFP with the ER marker.

Images with additional marker controls are shown in Supplemental Figure 1 online. Bars = 10 mm.
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In addition, RNAi suppression lines that targeted both SBH

genes were generated to examine the effects of a range of

trihydroxy LCB contents on growth and sphingolipid content. As

shown in Figure 7A, reduced growth was observed in plants with

a relative content of trihydroxy LCBs#;35%of the total LCBs in

leaves, and growth was progressively reduced in plants with

lower relative amounts of trihydroxy LCBs. Plants containing as

little as 18% trihydroxy LCBs, although dwarfed, retained the

ability to bolt and set seed.

Additional studies were conducted to determine whether the

reduced growth of sbh1-1 sbh2-1 plants was due to defects in

cell division or cell elongation. When plants were grown vertically

on agar plates under conditions of etiolation, the hypocotyl

length of the sbh1-1 sbh2-1 mutant was only ;25% of that of

wild-type plants (Figures 6E and 6F). In addition, the length of

epidermal cells in the middle part of the hypocotyls of the sbh1-1

sbh2-1mutant was shorter than that of cells in the corresponding

part of wild-type plants (see Supplemental Figures 4A and 4B

online). When grown vertically in the light, roots of sbh1-1 and

sbh2-1 single mutants were approximately the same length as

those of wild-type plants. However, roots of 5-d-old sbh1-1

sbh2-1 double mutant seedlings were ;66% the length of roots

of wild-type seedlings of the same age, and at 10 d, the roots of

sbh1-1 sbh2-1 seedlings were ;34% the length of wild-type

seedling roots (Figure 6G). Microscopic analyses of roots re-

vealed that sbh1-1 sbh2-1 plants had shorter and thinner mer-

istematic zones than those of roots from wild-type plants

(Figures 6I and 6J). To compare meristem growth between

wild-type and sbh1-1 sbh2-1 plants, the number of cortical cells

from the initial cell to the first rapidly elongating cell (indicated by

stars in Figures 6I and 6J) was counted using a previously

described methodology (Casamitjana-Martinez et al., 2003).

According to this criterion, root meristems of 5- and 10-d-old

sbh1-1 sbh2-1 seedlings contained ;20 and 16 cortical cells,

respectively, while wild-type 5- and 10-d-old seedlings had;38

and 47 cortical cells, respectively (Figure 6H). These data sug-

gest that cell division is reduced in the root meristem of the

sbh1-1 sbh2-1 mutant. Collectively, these results indicate that

defects in both cell elongation and division contribute to the

reduced size of the sbh1-1 sbh2-1 mutant.

The presence of necrotic lesions on cotyledons of double

mutant plants and the premature death of these plants are

reminiscent of phenotypes associated with accelerated cell

death (acd) Arabidopsis mutants, including the sphingolipid-

related acd11 and acd5 mutants (Brodersen et al., 2002; Liang

et al., 2003). To gain clues about the type of cell death present

in sbh1 sbh2 double mutants, the expression of PCD marker

genes was examined. For these studies, gene expression was

assessed by RT-PCR using leaves from 2-week-old plants

maintained on Murashige and Skoog (MS) plates. The marker

genes chosen were those previously used to examine cell

death in acd11 mutants (Brodersen et al., 2002). Similar to

previous observations for acd11 plants (Brodersen et al.,

2002), expression of PCD and related hypersensitive response

marker genes was detected at substantially higher levels in

the hydroxylase double mutants relative to wild-type plants

(Figure 8). These included SENESCENCE-ASSOCIATED GENE13

(SAG13; At2g29350), FLAVIN-CONTAINING MONOXYGENASE

(FMO; At1g19250), PEROXIDASE C (PRXc; At3g49120),

PATHOGENESIS-RELATED PROTEIN2 (PR-2; At2g14610), and

PR-3 (At3g57260). By contrast, no expression of the senescence-

associated gene SAG12 (At5g45890) was detected in the LCB C-4

hydroxylase double mutant, as was also observed with acd11

(Brodersen et al., 2002). These results suggest that, like acd11, a

hypersensitive response–type PCD is activated in sbh1 sbh2 dou-

ble mutants.

Effects of Altered LCB C-4 Hydroxylation on

Sphingolipid Content

The effects of altered trihydroxy LCB composition on the sphin-

golipid content of mutants and RNAi suppression lines were

examined by analysis of LCBs following hydrolysis of the total

sphingolipid extract. Quantitative measurements of sphingo-

lipids from leaves of 2-week-old agar-grown seedlings revealed

an ;1.5-fold increase in the total LCB content in sbh1-1 relative

to the wild-type control (Figure 5C). This increase was reversed

by complementation of sbh1-1with awild-type copy of theSBH1

gene (Figure 5C). No change in sphingolipid content was

detected in sbh2-1 and sbh2-2 seedlings, which also do not

have detectable alterations in total trihydroxy LCB composition

relative to wild-type seedlings (Figure 5C). Most strikingly, the

sbh1-1 sbh2-1 double mutant, which lacks detectable amounts

of trihydroxy LCBs, displayed twofold to threefold increases in

Figure 4. Gene Structures and Characterization of Mutant Alleles for

SBH1 and SBH2.

(A) Gene structures of SBH1 and SBH2 and T-DNA insertion sites in

mutants obtained from the SALK and SAIL collections. Solid bars

represent exons, and lines indicate introns. The open triangles indicate

the T-DNA insertion sites.

(B) RT-PCR analyses using gene-specific primers show that the T-DNA

lines used are null mutants for SBH1 or SBH2. The UBC gene

(At5g25760) was used as an internal control. Data shown are represen-

tative of three independent analyses.

1866 The Plant Cell



the total LCB content of leaves relative to that of the wild-type

control (Figure 5C). In addition, soil-grown RNAi suppression

lines with ;20% trihydroxy LCBs in total sphingolipid extract

contained nearly twofold higher levels of sphingolipids than wild-

type plants grown under similar conditions (Figure 7B). These

results indicate that reductions in LCBC-4 hydroxylation not only

affect the relative content of trihydroxy LCBs but also lead to

increases in total sphingolipid content.

Sphingolipidomic Analyses of Mutant and RNAi

Suppression Lines

Comprehensive analyses of the complete complement of sphin-

golipids (sphingolipidomic analyses) in T-DNAmutants and RNAi

suppression lines were conducted using the recently developed

HPLC coupled to electrospray ionization-tandem mass spec-

trometry (ESI-MS/MS) methods that allow for the detection and

quantification of the molecular species (or exact pairings of fatty

acids and LCBs) of different sphingolipid classes (Markham and

Jaworski, 2007). The goals of these studies were to determine

the effects of partial and complete loss of LCB C-4 hydroxylation

on sphingolipid metabolism and to examine whether SBH1 and

SBH2 contribute preferentially to the hydroxylation of different

sphingolipid classes. Four major classes of sphingolipid (ceram-

ides, hydroxyceramides, GlcCers, and GIPCs) were analyzed

along with free LCBs and phosphorylated LCBs (LCBPs) in

2-week-old T-DNA mutant seedlings maintained on MS plates.

Free LCBs and LCBPs, which are normally present at low

levels, were twofold to fourfold higher in the sbh1-1 and sbh2-1

mutants and >60-fold higher in the sbh1-1 sbh2-1 double mutant

Figure 5. Sphingolipid LCB Content and Composition of sbh1 and sbh2 Knockout Mutants.

(A) The relative content of trihydroxy LCBs in total sphingolipid extracts from different organs of wild-type plants and sbh1-1 and sbh2-1 mutants.

Values are means 6 SD (n = 5).

(B) Profiles of LCBs in the total sphingolipid extracts of wild-type plants and sbh1-1 sbh2-1 double mutant plants obtained by C18 reverse-phase HPLC

analysis of fluorescent derivatives of LCBs following barium hydroxide/dioxane hydrolysis of sphingolipids. Trihydroxy LCBs are labeled with asterisks.

The identities of the labeled peaks are as follows: 1, t18:1(8Z)-Glc (psychosine form); 2, t18:1(8E)-Glc; 3, t18:1(8Z); 4, t18:1(8E); 5, d16:1 (internal

standard); 6, t18:0; 7, d18:1(8Z)-Glc; 8, d18:1(8E)-Glc; 9, d18:1(8Z); 10, d18:1(8E); 11, 1,4-anhydro-t18:1(8Z); 12, 1,4-anhydro-t18:1(8E); 13, d18:0; 14,

1,4-anhydro-t18:0. d, dihydroxy; t, trihydroxy; x:y, x, number of carbon atoms, y, number of double bonds.

(C) Total content of LCBs in wild-type (Col-0) plants, single and double mutants of sbh1-1 and sbh2-1, and the sbh1-1 mutant complemented with a

wild-type copy of SBH1 [sbh1-1(com)]. Sphingolipids were extracted from rosettes of 14-d-old plants grown on MS agar plates. Data shown are

averages of five independent extractions and analyses 6 SD. A Student’s t test indicated that the total LCB content of both sbh1-1 and sbh1-1 sbh2-1

was significantly increased relative to the wild-type control (** P < 0.01).
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than in wild-type plants (Figure 9A; see Supplemental Figure 5A

online). The increase in free LCBs and LCBPs in the double

mutant was due largely to the accumulation of free d18:0 (60 6
16 nmol/g dry weight). This substantial increase in free d18:0 in

the double mutant is not explained simply by reduced C-4

hydroxylation, aswild-type plants contained only 1.66 0.6 nmol/

g dry weight free t18:0. Instead, accumulation of d18:0 is more

likely due to a bottleneck in the incorporation of this LCB into

ceramides. For example, enhanced production of d18:0 in

sbh1-1 sbh2-1 plants may exceed the capacity of ceramide

synthase to incorporate these LCBs into ceramides.

Increases in the content of substrate pools of LCBs for

ceramide synthases may also lead to higher levels of ceramides

and ultimately to increased amounts of complex sphingolipids.

Consistent with this, the ceramide content of sbh1-1 sbh2-1mu-

tants (150 6 12 nmol/g dry weight) was nearly twofold higher

than that of wild-type plants (86 6 4 nmol/g dry weight) (see

Supplemental Figure 5A online). In addition, the fatty acid com-

position of the ceramides of the double mutant was distinctly

different from that of wild-type plants.Most notably, palmitic acid

(16:0) accounted for;85% of the fatty acids in ceramides of the

double mutant but only 13% of the fatty acids in ceramides of

Figure 6. Growth Phenotypes of sbh1 sbh2 Double Mutants.

(A) Ten-day-old seedlings in soil. Arrows indicate the sbh1-1 sbh2-1 mutant segregated from the sbh1-1+/� sbh2-1�/� parent. Necrotic lesions are

indicated by the arrowhead.

(B) One week-old seedling grown on 13 MS plates. The arrow indicates the sbh1-1 sbh2-1 double mutant.

(C) and (D) Three-week-old seedlings on MS plates: wild type (C) and sbh1-1 sbh2-1 double mutant (D). Bars = 0.5 cm in (A) to (D).

(E) and (F) Reduced hypocotyl growth in 7-d-old etiolated sbh1-1 sbh2-1 plants relative to wild-type plants. Plants with shorter hypocotyls were

confirmed to be sbh1-1 sbh2-1 mutants (arrowheads) by use of PCR genotyping. The data shown are from one of three experiments.

(G) Root length of the wild type and the sbh1-1 sbh2-1 double mutant at 5 and 10 d after germination.

(H) Number of cells in the root meristem zone of wild-type and sbh1-1 sbh2-1 plants. Values are means 6 SD (n = 20) for (F) to (H).

(I) and (J)Meristem size of wild-type plants (I) and sbh1-1 sbh2-1 double mutants (J). Stars indicate the upper and lower ends of the meristem zone (see

text for definition of the root meristem zone). Bars = 100 mm.
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wild-type plants (Figures 9B and 9C). Accumulation of ceramides

in singlemutants ofSBH1 andSBH2wasmuch less pronounced;

however, the palmitic acid content of sbh1-1 ceramides was

elevated relative to that of wild-type ceramides (44 versus 13%)

(see Supplemental Figures 6A and 6B online).

Ceramides containing 2- (or a-) hydroxy fatty acids (hydroxy-

ceramides) were similarly affected. The hydroxyceramide con-

tent of the sbh1 sbh2 doublemutant (1506 12 nmol/g dryweight)

was nearly fivefold higher than that in wild-type plants (31 6
1 nmol/g dry weight) (Figures 9D and 9E). In addition, the relative

content of 2OH-palmitic acid was increased from 18% in

hydroxyceramides of wild-type plants to 89% in hydroxycer-

amides of sbh1-1 sbh2-1 plants (Figures 9D and 9E). Again, like

ceramides in the single mutants, hydroxyceramides were unaf-

fected in the sbh2-1 mutant. Increases in the total content of

hydroxyceramides as well as in the relative content of 2OH-

palmitic acid were detectable in the sbh1-1mutant but were less

severe than those in the double mutant (see Supplemental

Figures 6D and 6F online).

Examination of the GlcCers from the sbh1-1 sbh2-1 double

mutant showed that, as expected, they contained exclusively

dihydroxy-LCBs, and the 2OH-palmitic acid content of their

ceramide backbones was increased to 76 6 1% from the 45 6
1% found in GlcCers from wild-type plants (Figures 9F and 9G).

Similarly, GIPCs from the sbh1-1 sbh2-1 double mutant con-

tained only dihydroxy-LCBs and more than twice as much 2OH-

palmitic acid than GIPCs from wild-type plants (Figures 9H and

9I). Consistent with enhanced pool sizes of ceramides in the

double mutant, the total content of GlcCers was increased by

nearly threefold and that of GIPCs was increased by nearly

fivefold in the sbh1-1 sbh2-1 plants relative to wild-type plants

(see Supplemental Figure 5A online). Overall, the increase in total

sphingolipid content detected in sbh1-1 sbh2-1 double mutants

was similar in magnitude (twofold to threefold) to those detected

by HPLC analysis of LCBs from the hydrolyzed total complement

of sphingolipids described above (Figure 5C).

Figure 7. Growth and LCB Content of SBH RNAi Lines.

(A) Four-week-old wild-type seedlings and T2 seedlings of independent

SBH RNAi lines with varying levels of trihydroxy LCB content. Bar = 1 cm.

(B) An RNAi line (SBH RNAi) with a trihydroxy LCB content of ;20% total

sphingolipids was grown in soil, and total LCBs were measured from

leaves of 6-week-old plants by HPLC analysis of o-phthaldialdehyde

derivatives of LCBs following barium hydroxide/dioxane hydrolysis of total

sphingolipids. The RNAi-suppressed plants showed increased levels of

total LCBs (4.026 0.04 nmol/mg dry weight [dw]) compared with wild-type

plants grown under the same conditions (1.656 0.20 nmol/mg dry weight).

Results are averages of five independent extractions and analyses 6 SD.

Figure 8. RT-PCR Analysis of the Expression of PCD– and Hypersen-

sitive Response (HR)–Related Genes in Wild-Type (Col-0) and sbh1-1

sbh2-1 Double Mutant Plants.

The genes chosen are FMO (At1g19250), ERD11 (At1g02930), PRXc

(At3g49120), SAG13 (At2g29350), SAG12 (At5g45890), PR2

(At3g57260), and PR3 (At3g12500), as reported previously (Brodersen

et al., 2002). UBC (At5g25760) was used as an internal positive control.

Shown are representative results from three biological replicates. Oligo-

nucleotide sequences used for these analyses are provided in Supple-

mental Table 3 online.
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GlcCer and GIPC levels in the sbh1-1 single mutant were

increased and contained higher levels of 2OH-palmitic acid than in

the wild-type controls, but the extent of these changes was con-

siderably less than that detected in the sbh1-1 sbh2-1 mutants

(Figures 9F to 9I; see Supplemental Figures 6G, 6H, 6J, and 6K

online). Modest increases in the content of 2OH-palmitic acid were

detected in GlcCers and GIPCs in the sbh2-1mutant (Figures 9F to

9I; see Supplemental Figures 6H and 6K online), but little change in

the total content of these lipidswasmeasured. The observation that

SBH1mutantshaveat least small alterations in thecompositionofall

sphingolipid classes suggests that the corresponding hydroxylase

contributes globally to the synthesis of trihydroxy LCBs rather than

to the synthesis of trihydroxy LCBs for specific sphingolipid classes.

Analyses of soil-grown RNAi lines with 20% of the total sphin-

golipid LCBs in the trihydroxy form revealed similar phenotypes as

those of the double mutant, including increased total content of

Figure 9. Measurements of Free LCBs and LCBPs [LCB(P)s]) and Molecular Species Composition of Sphingolipid Classes in Extracts from Leaves of

Wild-Type (Col-0) and sbh1-1 sbh2-1 Plants Determined by HPLC-ESI-MS/MS.

(B), (D), (F), and (H) show measurements obtained from wild-type plants, and (C), (E), (G), and (I) show measurements obtained from sbh1-1 sbh2-1

double mutants. The measurements shown are of LCBPs (A), ceramide ([B] and [C]), hydroxyceramide ([D] and [E]), glucosylceramide ([F] and [G]),

and GIPC ([H] and [I]). Results are averages from analyses of three independent samples 6 SD.
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each sphingolipid class and the accumulation of C16 fatty acid–

containing sphingolipids (Figure 10; see Supplemental Figure 5B

online).

Overall, these results demonstrate a profound redirection of

sphingolipid metabolism accompanying reductions in LCB C-4

hydroxylation of sphingolipids, leading to increased sphingolipid

content and enhanced C16 fatty acid content of sphingolipids.

Glycerolipid Analyses of Double Mutant and RNAi

Suppression Lines

The content and molecular species composition of glycerolipids

in a sbh1-1 sbh2-1 double mutant and an SBH RNAi line were

analyzed by ESI-MS/MS. The purpose of these analyses was to

determine if the large increases in the total content of sphingo-

lipids and in the content of C16 fatty acid–containing species

Figure 10. HPLC-ESI-MS/MS Analysis of the Sphingolipid Composition of Leaves from 6-Week-Old Soil-GrownWild-Type and SBHRNAi Suppression

Plants.

Approximately 20% of the total LCBs in the RNAi line used for these analyses was in the trihydroxy form. Panels show measurements from wild-type

plants ([B], [D], [F], and [H]) and the SBH RNAi suppression line ([C], [E], [G], and [I]). Each panel shows measurements of individual molecular species

for different sphingolipid classes, as follows: LCBPs (A), ceramides ([B] and [C]), hydroxyceramides ([D] and [E]), glucosylceramides ([F] and [G]), and

GIPCs ([H] and [I]). Values are means 6 SD (n = 3).
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resulted in changes in glycerolipids. These studies were per-

formed using plants grown under the same conditions and of

similar age as those used for the sphingolipidomic analyses

described above. The analytical technique used for these anal-

yses allows for the measurement of 144 molecular species and

has now been widely applied for the comprehensive measure-

ment of glycerolipids in plants (Devaiah et al., 2006; Fritz et al.,

2007; Welti et al., 2007). Using these methods, only a small

reduction was detected in the content of phosphatidylcholine in

the sbh1-1 sbh2-1 double mutant relative to the wild-type control

(Figure 11D).Otherwise, little differencewasmeasured in amounts

of the major extraplastidic glycerolipids, including phosphatidyl-

ethanolamine and phosphatidylinositol, betweenwild-type plants,

the C-4 hydroxylase double mutant, and the RNAi suppression

line (Figures 11E and 11F). In addition, the molecular species

compositions of these glycerolipids were similar among these

lines (see Supplemental Data Set 1). By contrast, significant

differences were detected in the content and composition of

chloroplast-type lipids. In particular, amounts of the major leaf

lipid monogalactosyldiacylglycerol (MGDG) were ;33% lower in

the double mutant than in the wild-type control and 17% lower in

the RNAi line than in wild-type plants (Figure 11B). In both cases,

Figure 11. Glycerolipid Content and Composition of Leaves from Wild-Type Plants, the sbh1-1 sbh2-1 Double Mutant, and SBH RNAi Lines.

(A) to (F) Content of major glycerolipids in leaves from 2-week-old seedlings of the wild type (Col-0), the sbh1-1 sbh2-1 double mutant, and SBH RNAi

lines, as determined by ESI-MS/MS analysis. As indicated, double mutant and the corresponding wild-type control seedlings were maintained on MS

plates, and the RNAi and control plants were grown in soil. Values are averages 6 SD (n = 5).

(G) to (I) Lipid species of DGDG, MGDG, and PG. Values are averages 6 SD (n = 5).

* Significant at P < 0.01 compared with the wild type based on Student’s t test.
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most of these differences were the result of reductions in the C18/

C16-containing molecular species 34:4 and 34:6 (Figure 11H). In

addition,;25 and 9% less digalactosyldiacylglycerol (DGDG) and

43 and 30% less phosphatidylglycerol (PG) were detected in the

sbh1-1 sbh2-1 double mutant and RNAi lines, respectively, com-

pared with wild-type control plants (Figures 11A and 11C). As

observed for MGDG, the lower levels of PG and DGDG were due

primarily to reductions in amounts of the C18/C16-containing

species 34:4 for PGand 34:3 and 34:6 for DGDG (Figures 11G and

11I). Overall, these results point to the possibility that the in-

creased demand for palmitic acid (16:0) to support sphingolipid

biosynthesis in LCB C-4 hydroxylase mutants is met by reducing

the synthesis of chloroplast glycerolipids, particularly molecular

species containing C16 fatty acids.

DISCUSSION

Plant sphingolipids are enriched in trihydroxy LCBs, and trihy-

droxy LCBs compose nearly 90% of the sphingolipids of Arabi-

dopsis leaves(Markham et al., 2006). In this report, the

physiological and metabolic significance of sphingolipid trihy-

droxy LCBs was examined by characterization of LCB C-4

hydroxylase mutants or RNAi suppression lines that have no

detectable trihydroxy LCBs or have intermediate levels of LCB

C-4 hydroxylation. We show that complete loss of trihydroxy

LCBs results in severe reductions in the size of plants due to

defects in both cell expansion and division, and trihydroxy LCB–

deficient plants are unable to transition from vegetative to

reproductive growth. In addition, examination of RNAi suppres-

sion lines revealed that the degree of dwarfing is correlated with

the loss of trihydroxy LCBs, and reduced growth was observed

in lines with trihydroxy LCB content levels # ;35% of the

total LCBs in leaf extracts. By use of the recently developed ESI-

MS/MS protocols for sphingolipid molecular species analysis

(Markham and Jaworski, 2007), it was determined that reduc-

tions in trihydroxy LCBs are accompanied by the accumulation of

sphingolipids with C16 fatty acids rather than the more typical

very-long-chain fatty acids. In addition, the total content of sphin-

golipids in all classeswas found to increase as the relative content

of trihydroxy LCBs decreased. In mutants that completely lack

trihydroxy LCBs, the total content of sphingolipids in leaves was

twofold to threefold higher than that in leaves of wild-type plants.

Overall, these results demonstrate that C-4 hydroxylation of LCBs

is a critical structural modification for the maintenance of sphin-

golipid content and fatty acid composition and ultimately for the

growth and reproductive potential of Arabidopsis.

Several formal explanations may account for the growth

phenotypes associated with the loss of LCB C-4 hydroxylation

in Arabidopsis seen in our studies. Among the possibilities is that

the altered growth of the LCB C-4 hydroxylase mutants is the

direct result of the shift in LCB composition from trihydroxy to

dihydroxy moieties. Alternatively, growth defects may be due

to secondary alterations in sphingolipid profiles, including in-

creases in total sphingolipid content or the accumulation of

sphingolipids containing fatty acids of shorter chain lengths.

Notably, Arabidopsis cer10mutants, which have reduced enoyl-

CoA reductase activity, contain sphingolipids with increased

relative amounts of C16 fatty acids and corresponding de-

creases in relative amounts of very-long-chain fatty acids (Zheng

et al., 2005). These mutants display reduced growth, although

not as severe as the reductions in growth in the LCB C-4

hydroxylase null mutants (Zheng et al., 2005). The growth phe-

notype of cer10 mutants was attributed to defects in sphingo-

lipid-mediated endocytic protein trafficking (Zheng et al., 2005).

Indeed, sphingolipids are major structural components of

plasma membrane and tonoplast of plant cells (Verhoek et al.,

1983; Yoshida and Uemura, 1986), and alterations in sphingo-

lipid composition undoubtedly affect the physical properties of

these membranes and perhaps the organization of membrane

microdomains or lipid rafts, which have been linked to cellular

functions such as cell wall formation and cell–cell recognition

(Borner et al., 2005). In addition, sphingolipid metabolites are

believed to be involved in the regulation of certain physiological

processes in plant cells. For example, the LCB-1-phosphate

derivative of phytosphingosine, a trihydroxy LCB, appears to be

important in the abscisic acid–dependent signaling events lead-

ing to guard cell closure (Coursol et al., 2005). As such, it is

possible that the loss of phytosphingosine-1-phosphate in the

LCB C-4 hydroxylase mutants affects these and other physiolog-

ical and cellular processes. Furthermore, ceramides are known to

serve as components of glycosylphosphatidylinositol-type an-

chors for some cell surface proteins, including arabinogalactan

proteins (Svetek et al., 1999). Although the quantitative signifi-

cance of proteins with ceramide-containing anchors in plant cells

is not known, the functions of these proteins and their transport

to the plasma membrane may be altered in plants deficient in

trihydroxy LCBs.

An additional phenotype observed in sbh1 sbh2 double mu-

tants is the presence of necrotic lesions on cotyledons and

premature death (Figure 6A). Indeed, the accumulation of cer-

amides and free LCBs, as observed in the hydroxylase double

mutant, has been shown to induce PCD (Abbas et al., 1994;

Spassieva et al., 2002; Liang et al., 2003; Townley et al., 2005). In

addition, the acd11 mutant, which is defective in a putative LCB

transport protein, has been shown to have constitutively upreg-

ulated marker genes for hypersensitive response–type PCD

(Brodersen et al., 2002). Although the in vivo role of the putative

LCB transport protein in sphingolipid metabolism has yet to be

demonstrated, one possibility is that lesions in the ACD11 gene

result in increased levels of LCBs or ceramides in plant cells that

trigger PCD (Brodersen et al., 2002). Interestingly, we observed

that a number of the PCD-associated genes that are expressed

at high levels in acd11mutants are also upregulated in the sbh1-1

sbh2-1 double mutant (Figure 8). This finding suggests that the

necrotic lesions and premature death of the LCB C-4 hydroxy-

lase null mutant arise from PCD, likely caused by the buildup of

sphingolipids, including free LCBs and ceramides.

The observation that the LCB C-4 hydroxylase null mutants

and RNAi suppression lines have twofold to threefold higher

amounts of sphingolipids, primarily as C16 fatty acid–containing

species, raises the question of whether these large alterations in

sphingolipid production affect the synthesis of other lipids in

plant cells. Comprehensive analyses of glycerolipids by ESI-MS/

MS were conducted to address this question. These analyses

revealed that amounts of chloroplast lipids, particularly MGDG
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and PG, were significantly lower in the sbh1-1 sbh2-1 double

mutant and the RNAi suppression line relative to wild-type

control plants. The decreased amounts of MGDG and PG were

due largely to the reduced content of C16-containing molecular

species. Conversely, only small changes or no significant

changeswere detected in the content and composition of thema-

jor ER-type lipids (e.g., phosphatidylcholine and phosphatidyl-

ethanolamine). Although a number of explanations could be

evoked from these data, one possibility is that plant cells reduce

the synthesis of chloroplast lipids to meet the increased require-

ment for 16:0 to support enhanced sphingolipid production in

plants defective in LCBC-4 hydroxylation. This impliesmetabolic

coordination between the ER and chloroplasts for regulation of

the biosynthesis of sphingolipids and chloroplast-specific lipids.

The existence of such a metabolic network awaits further inves-

tigation. It should be noted that ESI-MS/MS analyses of sphin-

golipids and glycerolipids were conducted using independent

methodologies, which limits direct comparisons of absolute

amounts of these lipids between data sets.

Our results indicate that the combined activities of SBH1 and

SBH2 account for all detectable synthesis of trihydroxy LCBs in

Arabidopsis leaves. However, it cannot be ruled out that sphin-

golipid D4 desaturases (Ternes et al., 2002), which are distantly

related to LCB C-4 hydroxylases, also introduce some portion of

the C-4 hydroxy groups found in trihydroxy LCBs, particularly in

plants such as tomato (Solanum lycopersicum) and maize (Zea

mays), which contain high levels of D4 unsaturated LCBs (Dunn

et al., 2004; Markham et al., 2006). It is notable that in mammals

and certain fungi, the D4 desaturase homologs of DES2 also

display some level of LCB C-4 hydroxylase activity (Ternes et al.,

2002; Omae et al., 2004). The contributions of the sphingolipidD4

desaturase to LCB hydroxylation is difficult to assess in Arabi-

dopsis. The Arabidopsis sphingolipid D4 desaturase gene is

expressed only in flowers, as indicated by publicly available

microarray data (Zimmermann et al., 2004), and LCB products of

D4 desaturation are not detectable in nonfloral tissues of

Arabidopsis (Columbia; Sperling et al., 2005; Markham et al.,

2006). It has been reported previously that that LCB C-4 hydrox-

ylation in crude microsomes from maize leaves can use free

LCBs or LCB components of ceramides as substrates (Wright

et al., 2003). It was suggested that discrete hydroxylases cata-

lyze these reactions, because free LCBs and ceramides do not

act as competitors in these assays (Wright et al., 2003). It is

possible that these different activities arise from the LCB C-4

hydroxylase and the sphingolipid D4 desaturase. In this regard,

D4 unsaturated LCBs are found almost entirely in GlcCers rather

than in GIPCs (Markham et al., 2006; Markham and Jaworski,

2007), suggesting that D4 desaturases function directly on

ceramides in GlcCers or on a separate pool of ceramides used

in the synthesis of GlcCers. Conversely, consistent with the

activity on free LCBs, C-4 hydroxylase–derived trihydroxy LCBs

are found in all sphingolipid classes, including pools of free LCBs

and LCB-1 phosphates (Markham and Jaworski, 2007).

The results presented here indicate that trihydroxy LCBs

resulting from LCB C-4 hydroxylation play a central role in the

maintenance of growth, the fatty acid composition, and the total

content of sphingolipids. A model that rationalizes these obser-

vations is proposed in Figure 12. As indicated, the accumulation

of sphingolipid molecular species enriched in C16 fatty acids

is likely a reflection of the substrate specificity of acyl-CoA–

dependent ceramide synthases (or sphinganine N-acyltransfer-

ases), which catalyze the condensation of LCBs with fatty

acyl-CoAs. The data presented here are most consistent with

the occurrence of two classes of acyl-CoA–dependent ceramide

synthases (designated CS I andCS II in Figure 12) inArabidopsis.

The putative CS I class preferentially links dihydroxy LCBs with

C16 fatty acyl-CoAs, while the CS II class preferentially links

trihydroxy LCBs with very-long-chain fatty acyl-CoAs. Indeed, in

wild-type Arabidopsis, dihydroxy LCBs are most frequently

bound to C16 fatty acids (Markham and Jaworski, 2007), which

is accentuated in the LCB C-4 hydroxylase mutants. In addition,

acyl-CoA–dependent ceramide synthases with distinct specific-

ities for acyl-CoAs of different chain lengths have been described

in mouse and human cells (Guillas et al., 2003; Mizutani et al.,

2005; Pewzner-Jung et al., 2006). For example, the mouse

LASS6 ceramide synthase is most active, with acyl-CoAs con-

taining fatty acid chains with 12 to 18 carbon atoms, but it

displays little activity with C20 to C26 acyl-CoAs (Mizutani et al.,

2005). Conversely, themouse LASS2 ceramide synthase is most

active, with acyl-CoAs containing fatty acids with 22, 24, and

26 carbon atoms, but it has only low activity with shorter chain

acyl-CoAs (Mizutani et al., 2005). The occurrence in plants of

Figure 12. Model Showing the Central Role of Trihydroxy LCB Synthesis

in Growth and Sphingolipid Metabolism.

The accumulation of dihydroxy LCBs (d18:0) resulting from impaired C-4

hydroxylation causes sphingolipids (SL) to accumulate that are enriched

in C16 fatty acids (C16FA). This can be rationalized by the presence of

two classes of acyl-CoA–dependent ceramide synthases: CS I, which

preferentially uses dihydroxy LCBs and CoA esters of C16 fatty acids

(FA) as substrates, and CS II, which preferentially uses trihydroxy LCBs

(t18:0) and CoA esters of very-long-chain ($C20) fatty acids (VLCFA) as

substrates. As revealed by the phenotypes of sbh1-1 sbh2-1 mutants

and RNAi suppression lines, LCB C-4 hydroxylation (as indicated by

SBH) is critical for growth (as indicated in the shaded oval), and the

synthesis of trihydroxy LCB–containing sphingolipids is likely regulated,

perhaps through Ser palmitoyltransferase (SPT), to meet the demands of

growth. Loss of LCB C-4 hydroxylation appears to uncouple this regu-

lation, resulting in the accumulation of sphingolipids with dihydroxy LCB/

C16 fatty acid–containing ceramide backbones. 3KR, 3-ketosphinganine

reductase.
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ceramide synthaseswith differing substrate specificities has also

been suggested from research conducted on the Alternaria stem

canker-1 (asc-1) mutant of tomato (Spassieva et al., 2002). In

these studies, expression of the Asc-1–encoded ceramide syn-

thase in yeast lacking the endogenous genes for ceramide

synthase created new sphingolipid species, suggesting a differ-

ent substrate specificity for the tomato ceramide synthase

(Spassieva et al., 2002).

As indicated in the model in Figure 12 and supported by the

phenotypes of C-4 hydroxylase mutants and RNAi suppression

lines, trihydroxy LCB production is required for growth. The

model does not distinguish between the contributions of trihy-

droxy LCBs and very-long-chain fatty acids to growth. Regard-

less, LCB C-4 hydroxylation is important for mediating the

incorporation of very-long-chain fatty acids into the ceramides

of sphingolipids. In the absence of LCB C-4 hydroxylation, a

preponderance of C16 fatty acid–containing sphingolipids ac-

cumulates. It is likely that the regulation of sphingolipid synthesis

and growth are tightly intertwined. Consistent with this, we

recently showed that plants adjust growth to compensate for

reduced sphingolipid synthesis inArabidopsisRNAi suppression

lines for the LCB1 subunit of Ser palmitoyltransferase (Chen

et al., 2006).We propose that reduction or elimination of LCBC-4

hydroxylation uncouples the regulation of sphingolipid synthesis

from the demands for growth, resulting in enhanced flux through

the sphingolipid biosynthetic pathway and the increased accu-

mulation of sphingolipids, as observed in mutants and RNAi

suppression lines. Regulation of sphingolipid synthesis in yeast

and animals is generally believed to be mediated through Ser

palmitoyltransferase (designated SPT in Figure 12), although the

regulation of sphingolipid synthesis in these systems is still not

well defined (Hanada, 2003). The regulatory interactions be-

tween the formation of trihydroxy LCBs and SPT is likely to be a

fruitful topic for research aimed at understanding how sphingo-

lipid synthesis is controlled in plants.

Overall, the characterization of T-DNA mutants and RNAi

suppression lines for C-4 hydroxylase genes in these studies

has provided unexpected insights into the significance of sphin-

golipid structure for plant growth and development. These re-

sults also highlight how structural modifications, such as C-4

hydroxylation, of LCBs can dictate metabolic flow in the sphin-

golipid biosynthetic pathway in Arabidopsis. It is expected that

the results presented here will provide direction for future studies

of sphingolipid function and metabolism in plants.

METHODS

Plant Material and Growth Conditions

Wild-type and mutant Arabidopsis thaliana lines used for these studies

were of the Columbia (Col-0) ecotype. Multiple T-DNA insertion mutants

for SBH1 and SBH2 (Figure 4A) were obtained from the ABRC (Alonso

et al., 2003). Primers used for PCR genotyping of these mutants are

provided in Supplemental Table 1 online.

Plants were grown on soil or MS agar as described previously (Chen

et al., 2006). For growth under long-day conditions, plants were main-

tained at 228C and 50% humidity with a 16-h-light (100 mmol·m22·s21)/

8-h-dark cycle. Root elongation measurements were conducted on

plants grown on plates in a vertical orientation. To measure elongation

of hypocotyls in response to etiolation, seeds were sown on MS agar

plates and exposed to light for 6 to 8 h after stratification to promote

germination. Plates were then wrapped in aluminum foil and maintained

for 7 d at 228C in a vertical orientation. The ability of exogenous LCBs to

complement C-4 hydroxylase sbh1-1 sbh2-1 double mutants was ex-

amined by the addition of phytosphingosine (t18:0; Matreya) in methanol

at varying concentrations up to 200 mM to MS medium supplemented

with 0.2% (w/v) Tergitol Nonidet P-40 (Sigma-Aldrich) (Abbas et al., 1994).

RNA Isolation and RNA Gel Blotting

Total RNA was isolated from 10-d-old soil-grown seedlings. For analyses

of organ-specific expression of SBH1 and SBH2, 6- to 8-week-old wild-

type plants were used as sources of plant material. RNA extraction was

performed using the RNeasy Plant Kit (Qiagen) according to the manu-

facturer’s protocol. Total RNA (15 mg) was treated with glyoxal (Ambion)

and electrophoresed on a 1% (w/v) agarose gel and then transferred

to Hybond nylon membranes (GE Bioscience) using the reagents and

protocol supplied with the NorthernMax kit (Ambion). Hybridization and

detection were conducted according to the protocol for the DIG High

Primer DNA Labeling and Detection Starter Kit II (Roche). The DNA

probe was labeled with the PCR DIG Probe Synthesis Kit (Roche). Gene-

specific probes were obtained from PCR products corresponding to the

39-untranslated region of SBH1 or SBH2. Oligonucleotides P9 and P10

were used for generation of the SBH1-specific probe, and P11 and P12

were used to generate the SBH2-specific probe (see Supplemental Table

2 online for the sequences of oligonucleotides).

RT-PCR Verification of T-DNAMutants

Total RNA was isolated from 10-d-old wild-type and mutant seedlings

grown on 13 MS plates. Total RNA (1 mg) was first treated with DNase

(Roche), and first-strand cDNA was subsequently synthesized using

SuperScript III reverse transcriptase (Invitrogen) and oligo(dT) primer,

according to themanufacturer’s instructions. A 2-mLaliquot of first-strand

cDNA was used as template to amplify SBH1, SBH2, or the gene for the

ubiquitin-conjugating enzyme (UBC; At5g25760) in a 20-mL reaction with

30 cycles of amplification and 558C annealing temperature. PCR ampli-

ficationwas conductedwithTaqDNApolymerase (NewEnglandBiolabs).

Primers used for amplification of SBH1-derived cDNA were P9 and P10,

and those used for SBH2 were P11 and P12 (see Supplemental Table 2

online). Amplification products were analyzed by electrophoresis in 1%

agarose (w/v) anddetectedbyethidiumbromide staining. Thegene for the

UBC (At5g25760) was used as an internal control (Czechowski et al.,

2005). Primers P13 and P14 (see Supplemental Table 2 online) were used

for amplification of the UBC-derived cDNA.

Expression Analysis of PCDMarker Genes

Total RNA was extracted from 2-week-old control and sbh1-1 sbh2-1

double mutant plants grown on MS plates, and first-strand cDNA was

prepared as described above. RT-PCR analysis was conducted with

equal amounts of first-strand cDNA as template. Oligonucleotides and

the numbers of PCR cycles used for each target gene are provided in

Supplemental Table 3 online. UBC (At5g25760) was amplified and used

as an internal positive control.

Promoter-GUS Assay of SBH1 and SBH2

A SBH1 promoter–GUS reporter construct was generated by amplifica-

tion of an ;2.0-kb sequence upstream of the start codon of SBH1

(At1g69640) using the sense and antisense oligonucleotides P19 and P20

(see Supplemental Table 2 online). The product was digested with HindIII

and XbaI and cloned into the corresponding sites of binary vector pBI121

Sphingolipid LCB Hydroxylation 1875



(Clontech) to generate a transcriptional fusion with the GUS coding

region. The resulting plasmid was designated ProSBH1:GUS. ProSBH2:

GUS was generated in a similar way using primer pair P21 and P22 (see

Supplemental Table 2 online). Homozygous lines containing both

ProSBH1:GUS and ProSBH2:GUS constructs were isolated from the T3

generation. Histochemical assay for GUS activity was performed as

described previously (Gallagher, 1992).

Subcellular Localization of SBH1 and SBH2

CFP fusion proteins with SBH1 and SBH2were prepared by amplification

of the SBH1 and SBH2 open reading frames with oligonucleotides P3/P4

and P6/P7 (see Supplemental Table 2 online), respectively. PCR products

were first cloned into the pENTR/D-TOPO vector (Invitrogen). The

resulting plasmids were combined with the destination vector pEarley-

gate 102 (Earley et al., 2006) in an attL 3 attR recombination reaction to

generate the CFP C-terminal fusion constructs pSBH1-CFP and pSBH2-

CFP. Similarly, YFP-SBH1 and YFP-SBH2 fusion proteins with YFP at

their N termini were generated using the primer pair P3/P5 andP6/P8 (see

Supplemental Table 2 online), respectively, and the destination vector

pEarleygate 104.

Agrobacterium tumefaciens–mediated infiltration of tobacco (Nicotiana

tabacum) leaves with pSBH1-CFP and pSBH2-CFP and confocal laser

scanning microscopy were conducted using a Carl Zeiss LSM 510 laser

scanningmicroscope as described previously (Chen et al., 2006). The ER-

specific marker used for these studies was YFP fused to the ER signal

peptide of basic chitinase at its N terminus and to the HDEL ER retention

sequence at its C terminus (Chen et al., 2006).

The localizations of SBH1– and SBH2–fluorescent protein fusions were

also examined relative to a plasma membrane marker dye. For these

studies, leaves of tobacco transiently expressing SBH1-CFP or SBH2-

CFP were immersed in 20 mM FM4-64 (Invitrogen) for 10 min to stain the

plasma membrane of cells. CFP was excited with a 458-nm argon laser

line and a 480- to 520-nm band-pass emission filter, while FM4-64 was

excited with a 543-nm argon laser line and a 565- to 615-nm band-pass

emission filter.

Complementation of a Yeast sur2DMutant with SBH–Fluorescent

Protein Fusions

An LCB C-4 hydroxylase mutant (sur2D) of Saccharomyces cerevisiae

strain BY4741 was prepared by disruption of the SUR2 gene with a LEU2

marker using methods described previously (Haak et al., 1997). The

coding sequences of N-terminal fusions of SBH1 or SBH2 with YFP and

C-terminal fusions of these proteins with CFP were amplified by PCR

from plant expression vectors used in transient localization studies. The

oligonucleotides used for amplification of SBH1- orSBH2-CFPnucleotide

sequences were P23/P24 and P24/P25, respectively, and those used for

amplification of YFP-SBH1 or YFP-SBH2 sequences were P26/P27 and

P26/P28, respectively (see Supplemental Table 2 online). PCR products

were digested with HindIII and XbaI and cloned into the yeast expression

vector pYES2 (Invitrogen). The resulting plasmids were transformed into

the sur2D yeast mutant, and the fusion proteins were expressed with

galactose induction of 3-mL cultures using previously describedmethods

(Cahoon and Kinney, 2004). The total LCB composition of the yeast was

determined by heating of cell pellets in barium hydroxide/dioxane

followed by HPLC analysis of fluorescent derivatives of released LCBs,

as described previously (Morrison and Hay, 1970; Chen et al., 2006).

Genetic Complementation of sbh1-1

For genomic complementation of sbh1-1 or sbh1-1 sbh2-1 plants, an

;2.7-kb fragment of SBH1 was amplified from Arabidopsis (Col-0)

genomic DNA using the oligonucleotides P1 and P2 (for primer se-

quences, see Supplemental Table 2 online). The amplified product was

then digested with AscI and PacI and cloned into the corresponding

restriction sites of the binary vector pMDC123 (Curtis and Grossniklaus,

2003) in place of the cloning cassette to produce pMDC123_SBH1g.

Transformation of sbh1-1 or sbh1-12/+ sbh2-12/2with pMDC123_SBH1g

was performed by the floral dip method (Clough and Bent, 1998), and

transformants were selected by resistance to glufosinate (10 mg/L;

Sigma-Aldrich).

Generation of SBH RNAi Suppression Plants

A SBH1 RNAi suppression construct was generated using the Kannibal

RNAi vector system (Helliwell andWaterhouse, 2003). A 356-bp fragment

containing base pairs 25 to 380 of the SBH1 open reading frame was

amplified using two pairs of oligonucleotides, P15/P16 and P17/P18 (see

Supplemental Table 2 online), and the products of the two reactions were

cloned sequentially into the pKannibal vector. The amplified portion of

SBH1 contains regions of absolute homologywith the open reading frame

of SBH2. The resulting hairpin construct together with the cauliflower

mosaic virus 35S promoter and the ocs terminator were released and

inserted into the NotI site of binary vector pART27 to generate pKanSB-

H1i. Binary vectors were introduced into Agrobacterium GV3101 by

electroporation, and transgenic plants were generated by floral dip of

Arabidopsis (Col-0) (Clough and Bent, 1998) and screened on MS plates

containing 50 mg/L kanamycin monosulfate. Four- to 6-week-old T2

plants grown in soil were used to analyze total LCBs and sphingolipid

molecular species.

Microscopy

Imaging of wild-type and mutant plants was performed using a Nikon

SMZ1500 dissection microscope attached to a digital camera (Retiga

1300; Qimaging), and images were processed with IPLab software.

Hypocotyls were clearedwith Hoyer’s solution and observedwith a Nikon

Eclipse E800 microscope equipped with a differential interference con-

trast apparatus (Nomarski optics) as described previously (Chen et al.,

2006). Observations of root meristem zones were conducted with whole

seedlings that were stained with propidium iodide (10 mg/mL [w/v];

Sigma-Aldrich) for 2 to 5 min and then rinsed with water. Stained roots

were analyzed with a Carl Zeiss LSM 510 laser scanningmicroscope with

excitation at 543 nm and emission at 590 nm.

Analysis of Sphingolipid LCBs

The total content and composition of sphingolipid LCBswere determined

following strong alkaline hydrolysis of extracted complex sphingolipids,

fluorescent derivatization of released LCBs, and subsequent reverse-

phase HPLC analysis as described previously (Morrison and Hay, 1970;

Chen et al., 2006). For analysis of the total content of sphingolipid, plants

were grown for 14 d on theMS plates supplied with 1% (w/v) sucrose. For

analysis of the sphingolipid LCB composition of different organs, plants

were grown under long-day conditions (see above) and harvested at 8

weeks of age.

Sphingolipidomic Analyses

Wild-type or mutant plants were grown on 13 MS agar plates supplied

with 1% sucrose for 14 d, and aerial portions of the seedlings were

collected and lyophilized. For RNAi lines and wild-type controls, plants

were maintained on soil using the growth conditions described above,

and leaveswere collected from 6-week-old plants and lyophilized. Global

analyses of molecular species of different sphingolipid classes were

conducted with reverse-phase HPLC coupled to ESI-MS/MS as de-

scribed by Markham and Jaworski (2007).

1876 The Plant Cell



Glycerolipid Analyses

Comprehensive glycerolipid analyses were conducted on sbh1-1 sbh2-1

double mutant and RNAi suppression lines grown and harvested as

described above for sphingolipidomic analyses. Lipid extractions, ESI-

MS/MS analyses, and lipid quantification were conducted as described

(Devaiah et al., 2006) with minor modifications. For analysis of DGDG,

341.11 [M + NH4]+ and collision energy of 24 V were used. For analysis of

MGDG, 179.08 [M + NH4]+ and collision energy of 21 V were used. The

ESI-MS/MS analyses were performed by the Kansas Lipidomics Re-

search Center.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative or GenBank/EMBL databases under the following accession

numbers: SBH1, NM_105632; SBH2, NM_101295.
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