31 research outputs found

    Both common variations and rare non-synonymous substitutions and small insertion/deletions in CLU are associated with increased Alzheimer risk.

    Get PDF
    BACKGROUND: We have followed-up on the recent genome-wide association (GWA) of the clusterin gene (CLU) with increased risk for Alzheimer disease (AD), by performing an unbiased resequencing of all CLU coding exons and regulatory regions in an extended Flanders-Belgian cohort of Caucasian AD patients and control individuals (n = 1930). Moreover, we have replicated genetic findings by targeted resequencing in independent Caucasian cohorts of French (n = 2182) and Canadian (n = 573) origin and by performing meta-analysis combining our data with previous genetic CLU screenings. RESULTS: In the Flanders-Belgian cohort, we identified significant clustering in exons 5-8 of rare genetic variations leading to non-synonymous substitutions and a 9-bp insertion/deletion affecting the CLU β-chain (p = 0.02). Replicating this observation by targeted resequencing of CLU exons 5-8 in 2 independent Caucasian cohorts of French and Canadian origin identified identical as well as novel non-synonymous substitutions and small insertion/deletions. A meta-analysis, combining the datasets of the 3 cohorts with published CLU sequencing data, confirmed that rare coding variations in the CLU β-chain were significantly enriched in AD patients (OR(MH) = 1.96 [95% CI = 1.18-3.25]; p = 0.009). Single nucleotide polymorphisms (SNPs) association analysis indicated the common AD risk association (GWA SNP rs11136000, p = 0.013) in the 3 combined datasets could not be explained by the presence of the rare coding variations we identified. Further, high-density SNP mapping in the CLU locus mapped the common association signal to a more 5' CLU region. CONCLUSIONS: We identified a new genetic risk association of AD with rare coding CLU variations that is independent of the 5' common association signal identified in the GWA studies. At this stage the role of these coding variations and their likely effect on the β-chain domain and CLU protein functioning remains unclear and requires further studies.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)

    Get PDF
    Using a sample of 122 million Upsilon(3S) events recorded with the BaBar detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for the hb(1P)h_b(1P) spin-singlet partner of the P-wave chi_{bJ}(1P) states in the sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We observe an excess of events above background in the distribution of the recoil mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width of the observed signal is consistent with experimental resolution, and its significance is 3.1sigma, including systematic uncertainties. We obtain the value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Meta-analysis of genome-wide association studies for extraversion:Findings from the Genetics of Personality Consortium

    Get PDF
    Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Scarcity of major resistance genes against Verticillium wilt caused by Verticillium dahliae

    No full text
    Verticillium dahliae is a soil-borne fungal pathogen that causes vascular wilt disease in numerous plant species. The only described qualitative resistances against V. dahliae are the Ve1 gene and the V2 locus in tomato. These resistances have been overcome by virulent strains. We tried to identify additional resistances. Out of the methods we tested, comparing the canopy area of V. dahliae-inoculated plants with mock-inoculated plants yielded the best discriminative power in resistance tests. Out of six wild tomato accessions that were previously reported to possess some resistance, Solanum pimpinellifolium G1.1596 and Solanum cheesmanii G1.1615 displayed the lowest stunting and the least colonization by V. dahliae. Recombinant inbred line (RIL) populations were developed of both populations. No QTLs were identified in the G1.1596 RIL population. In the G1.1615 population, four small-effect QTLs were associated with reduced stunting. Many studies in other hosts also failed to discover major resistance genes against V. dahliae. We hypothesize that the scarcity of major resistance genes against V. dahliae is caused by its endophytic behaviour in nature. The limited damage in nature would not lead to evolutionary pressure to evolve major resistances. However, in agriculture, V. dahliae can behave more pathogenic, leading to serious damage

    Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL

    No full text
    Key message: Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning

    Comparative genomics reveals the in planta-secreted Verticillium dahliae Av2 effector protein recognized in tomato plants that carry the V2 resistance locus

    Get PDF
    Plant pathogens secrete effector molecules during host invasion to promote colonization. However, some of these effectors become recognized by host receptors to mount a defence response and establish immunity. Recently, a novel resistance was identified in wild tomato, mediated by the single dominant V2 locus, to control strains of the soil-borne vascular wilt fungus Verticillium dahliae that belong to race 2. With comparative genomics of race 2 strains and resistance-breaking race 3 strains, we identified the avirulence effector that activates V2 resistance, termed Av2. We identified 277 kb of race 2-specific sequence comprising only two genes encoding predicted secreted proteins that are expressed during tomato colonization. Subsequent functional analysis based on genetic complementation into race 3 isolates and targeted deletion from the race 1 isolate JR2 and race 2 isolate TO22 confirmed that one of the two candidates encodes the avirulence effector Av2 that is recognized in V2 tomato plants. Two Av2 allelic variants were identified that encode Av2 variants that differ by a single acid. Thus far, a role in virulence could not be demonstrated for either of the two variants

    Comparative genomics reveals the in planta-secreted Verticillium dahliae Av2 effector protein recognized in tomato plants that carry the V2 resistance locus

    No full text
    Plant pathogens secrete effector molecules during host invasion to promote colonization. However, some of these effectors become recognized by host receptors to mount a defence response and establish immunity. Recently, a novel resistance was identified in wild tomato, mediated by the single dominant V2 locus, to control strains of the soil-borne vascular wilt fungus Verticillium dahliae that belong to race 2. With comparative genomics of race 2 strains and resistance-breaking race 3 strains, we identified the avirulence effector that activates V2 resistance, termed Av2. We identified 277 kb of race 2-specific sequence comprising only two genes encoding predicted secreted proteins that are expressed during tomato colonization. Subsequent functional analysis based on genetic complementation into race 3 isolates and targeted deletion from the race 1 isolate JR2 and race 2 isolate TO22 confirmed that one of the two candidates encodes the avirulence effector Av2 that is recognized in V2 tomato plants. Two Av2 allelic variants were identified that encode Av2 variants that differ by a single acid. Thus far, a role in virulence could not be demonstrated for either of the two variants
    corecore