134 research outputs found

    Příprava a charakterizace fotokatalyticky aktivního oxidu titaničitého

    Get PDF
    Import 19/10/2011The bachelor thesis is focused on the preparation and characterization of photocatalytically active titanium dioxide. Nanostructured titanium dioxide is outstanding photocatalyst finding a variety of applications from the water treatment to its utilization in energetic. This bachelor thesis focuses on the preparation of the titanium dioxide using the sol-gel method. Titanium tetraisopropoxide was used as a titanium precursor. The samples were prepared in the form of powder as well as in the form of thin layers deposited on the glass substrate. The prepared samples were characterized using methods of chemical and phase analysis, the morphology of the samples was studied using microscopy techniques. The prepared samples were examined for evaluation of their photodegradation activity.Bakalářská práce se zabývá přípravou a charakterizací fotoaktivního oxidu titaničitého. Nanostrukturovaný oxid titaničitý je významným fotokatalyzátorem využívaným v mnoha odvětvích od čištění vody až po jeho využití v energetickém průmyslu. Tato bakalářská práce se zabývá přípravou oxidu titaničitého metodou sol-gel. Jako prekurzor titanu byl použit isopropylalkoholát titaničitý, vzorky oxidu titaničitého byly připraveny ve formě prášku a ve formě tenkých vrstev nanesených metodou dip-coating na skleněných substrátech. Připravené vzorky byly charakterizovány vybranými metodami chemické a fázové analýzy, morfologie vzorků byla studována pomocí mikroskopických technik. U připravených materiálů byla testována jejich fotodegradační aktivita.9360 - Centrum nanotechnologiívýborn

    Photocatalytic decomposition of nitrous oxide using TiO2 and Ag-TiO2 nanocomposite thin films

    Get PDF
    TiO2 and Ag-TiO2 (0.05, 0.25 and 1 wt% of Ag) thin films were prepared by the sol–gel method. The prepared films were characterized using SEM-EDAX, XRD, Raman spectroscopy, atomic force microscopy and UV–Vis spectrometry. Photocatalytic decomposition of N2O was performed in an annular batch reactor illuminated with an 8 W Hg lamp (254 nm wavelength). The photoreactivity of Ag-TiO2 increases with the Ag amount to 0.25 wt% Ag. Further increase of Ag loading to 1 wt% Ag did not change N2O conversion. The Ag particles deposited on the TiO2 surface can act as electron–hole separation centers. The presence of water vapor and oxygen in the reaction mixture slightly improved N2O conversion.Web of Science20917517

    Metal‐Cation Recognition in Water by a Tetrapyrazinoporphyrazine‐Based Tweezer Receptor

    Full text link
    A series of zinc azaphthalocyanines with two azacrowns in a rigid tweezer arrangement were prepared and the fluorescence sensing properties were investigated. The size‐driven recognition of alkali and alkaline earth metal cations was significantly enhanced by the close cooperation of the two azacrown units, in which both donor nitrogen atoms need to be involved in analyte binding to switch the sensor on. The mono‐ or biphasic character of the binding isotherms, together with the binding stoichiometry and magnitude of association constants (KA), indicated specific complexation of particular analytes. Water solvation was shown to play an important role and resulted in a strong quenching of sensor fluorescence in the ON state. The lead compound was embedded into silica nanoparticles and advantageous sensing properties towards K+ were demonstrated in water (λF=671 nm, apparent KA=82 m−1, increase of 17×), even in the presence of (supra)physiological concentrations of Na+ and Ca2+.In a pinch: Close cooperation of azacrowns in fluorescence sensors derived from tetrapyrazinoporphyrazines is responsible for high sensitivity and selectivity towards particular cations. Water solvation, however, quenches the fluorescence strongly. Interestingly, embedding the sensor into silica nanoparticles overcomes this problem and result in an excellent red‐emitting fluorescence sensor (see figure).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137532/1/chem201504268.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137532/2/chem201504268-sup-0001-misc_information.pd

    Phonon-induced spin relaxation of conduction electrons in aluminum

    Get PDF
    Spin-flip Eliashberg function αS2F\alpha_S^2F and temperature-dependent spin relaxation time T1(T)T_1(T) are calculated for aluminum using realistic pseudopotentials. The spin-flip electron-phonon coupling constant λS\lambda_S is found to be 2.5×1052.5\times 10^{-5}. The calculations agree with experiments validating the Elliott-Yafet theory and the spin-hot-spot picture of spin relaxation for polyvalent metals.Comment: 4 pages; submitted to PR

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Quality of MALDI-TOF Mass Spectra in Routine Diagnostics: Results from an International External Quality Assessment including 36 Laboratories from 12 countries using 47 challenging bacterial strains.

    Get PDF
    OBJECTIVE MALDI-TOF MS is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are: number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it. METHODS For baseline MSQ assessment, 47 diverse bacterial strains which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared. RESULTS At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [5, 25]), reproducibility between technical replicates (range = [55%, 86%]), and measurement error (range = [147 parts per million (ppm), 588ppm]). As a general trend, the spectral quality was improved after the intervention for devices which yielded low MSQs in the baseline assessment: for 4/5 devices with a high measurement error, the measurement precision was improved (p-values<0.001, paired Wilcoxon test); for 6/10 devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values<0.001, paired Wilcoxon test). CONCLUSION We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this EQA requires further study

    Measurement of low-mass e + e − pair production in 1 and 2 A GeV C–C collision with HADES

    Get PDF
    HADES is a secondary generation experiment operated at GSI Darmstadt with the main goal to study dielectron production in proton, pion and heavy ion induced reactions. The first part of the HADES mission is to reinvestigate the puzzling pair excess measured by the DLS collaboration in C+C and Ca+Ca collisions at 1A GeV. For this purpose dedicated measurements with the C+C system at 1 and 2A GeV were performed. The pair excess above a cocktail of free hadronic decays has been extracted and compared to the one measured by DLS. Furthermore, the excess is confronted with predictions of various model calculations. © 2009 Springer-Verlag / Società Italiana di Fisica. 62 1 81 84 Cited By :

    Study of e+,e− production in elementary and nuclear collisions near the production threshold with HADES

    Get PDF
    HADES is a second generation experiment designed to study dielectron production in proton, pion, and heavy ion induced reactions at the GSI accelerator facility in Darmstadt. The physics programme of HADES is focused on in-medium properties of the light vector mesons. In this contribution we present status of the HADES experiment, demonstrate its capability to identify rare dielectron signal, show first experimental results obtained from C+C reactions at 2 A GeV and shortly discuss physics programme of up-coming experimental runs. © 2004 Elsevier B.V. All rights reserved. 53 1 49 58 Cited By :1

    Subsequent Event Risk in Individuals with Established Coronary Heart Disease:Design and Rationale of the GENIUS-CHD Consortium

    Get PDF
    BACKGROUND: The "GENetIcs of sUbSequent Coronary Heart Disease" (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD. METHODS: The consortium currently includes 57 studies from 18 countries, recruiting 185,614 participants with either acute coronary syndrome, stable CHD or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events. RESULTS: Enrollment into the individual studies took place between 1985 to present day with duration of follow up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (HR 1.15 95% CI 1.14-1.16) per 5-year increase, male sex (HR 1.17, 95% CI 1.13-1.21) and smoking (HR 1.43, 95% CI 1.35-1.51) with risk of subsequent CHD death or myocardial infarction, and differing associations with other individual and composite cardiovascular endpoints. CONCLUSIONS: GENIUS-CHD is a global collaboration seeking to elucidate genetic and non-genetic determinants of subsequent event risk in individuals with established CHD, in order to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators
    corecore