77 research outputs found

    Land Use and Pollinator Dependency Drives Global Patterns of Pollen Limitation in the Anthropocene

    Get PDF
    Land use change, by disrupting the co-evolved interactions between plants and their pollinators, could be causing plant reproduction to be limited by pollen supply. Using a phylogenetically controlled meta-analysis on over 2200 experimental studies and more than 1200 wild plants, we ask if land use intensification is causing plant reproduction to be pollen limited at global scales. Here we report that plants reliant on pollinators in urban settings are more pollen limited than similarly pollinator-reliant plants in other landscapes. Plants functionally specialized on bee pollinators are more pollen limited in natural than managed vegetation, but the reverse is true for plants pollinated exclusively by a non-bee functional group or those pollinated by multiple functional groups. Plants ecologically specialized on a single pollinator taxon were extremely pollen limited across land use types. These results suggest that while urbanization intensifies pollen limitation, ecologically and functionally specialized plants are at risk of pollen limitation across land use categories

    Anthropological contributions to historical ecology: 50 questions, infinite prospects.

    Get PDF
    This paper presents the results of a consensus-driven process identifying 50 priority research questions for historical ecology obtained through crowdsourcing, literature reviews, and in-person workshopping. A deliberative approach was designed to maximize discussion and debate with defined outcomes. Two in-person workshops (in Sweden and Canada) over the course of two years and online discussions were peer facilitated to define specific key questions for historical ecology from anthropological and archaeological perspectives. The aim of this research is to showcase the variety of questions that reflect the broad scope for historical-ecological research trajectories across scientific disciplines. Historical ecology encompasses research concerned with decadal, centennial, and millennial human-environmental interactions, and the consequences that those relationships have in the formation of contemporary landscapes. Six interrelated themes arose from our consensus-building workshop model: (1) climate and environmental change and variability; (2) multi-scalar, multi-disciplinary; (3) biodiversity and community ecology; (4) resource and environmental management and governance; (5) methods and applications; and (6) communication and policy. The 50 questions represented by these themes highlight meaningful trends in historical ecology that distill the field down to three explicit findings. First, historical ecology is fundamentally an applied research program. Second, this program seeks to understand long-term human-environment interactions with a focus on avoiding, mitigating, and reversing adverse ecological effects. Third, historical ecology is part of convergent trends toward transdisciplinary research science, which erodes scientific boundaries between the cultural and natural

    Macroevolution of the plant–hummingbird pollination system

    Get PDF
    ABSTRACTPlant–hummingbird interactions are considered a classic example of coevolution, a process in which mutually dependent species influence each other's evolution. Plants depend on hummingbirds for pollination, whereas hummingbirds rely on nectar for food. As a step towards understanding coevolution, this review focuses on the macroevolutionary consequences of plant–hummingbird interactions, a relatively underexplored area in the current literature. We synthesize prior studies, illustrating the origins and dynamics of hummingbird pollination across different angiosperm clades previously pollinated by insects (mostly bees), bats, and passerine birds. In some cases, the crown age of hummingbirds pre‐dates the plants they pollinate. In other cases, plant groups transitioned to hummingbird pollination early in the establishment of this bird group in the Americas, with the build‐up of both diversities coinciding temporally, and hence suggesting co‐diversification. Determining what triggers shifts to and away from hummingbird pollination remains a major open challenge. The impact of hummingbirds on plant diversification is complex, with many tropical plant lineages experiencing increased diversification after acquiring flowers that attract hummingbirds, and others experiencing no change or even a decrease in diversification rates. This mixed evidence suggests that other extrinsic or intrinsic factors, such as local climate and isolation, are important covariables driving the diversification of plants adapted to hummingbird pollination. To guide future studies, we discuss the mechanisms and contexts under which hummingbirds, as a clade and as individual species (e.g. traits, foraging behaviour, degree of specialization), could influence plant evolution. We conclude by commenting on how macroevolutionary signals of the mutualism could relate to coevolution, highlighting the unbalanced focus on the plant side of the interaction, and advocating for the use of species‐level interaction data in macroevolutionary studies

    Glopl, a global data base on pollen limitation of plant reproduction

    Get PDF
    Plant reproduction relies on transfer of pollen from anthers to stigmas, and the majority of flowering plants depend on biotic or abiotic agents for this transfer. A key metric for characterizing if pollen receipt is insufficient for reproduction is pollen limitation, which is assessed by pollen supplementation experiments. In a pollen supplementation experiment, fruit or seed production by flowers exposed to natural pollination is compared to that following hand pollination either by pollen supplementation (i.e. manual outcross pollen addition without bagging) or manual outcrossing of bagged flowers, which excludes natural pollination. The GloPL database brings together data from 2969 unique pollen supplementation experiments reported in 927 publications published from 1981 to 2015, allowing assessment of the strength and variability of pollen limitation in 1265 wild plant species across all biomes and geographic regions globally. The GloPL database will be updated and curated with the aim of enabling the continued study of pollen limitation in natural ecosystems and highlighting significant gaps in our understanding of pollen limitation.<p>Correction in: Scientific Data, vol. 6, article number: 2. DOI: 10.1038/s41597-018-0006-1</p

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Sex Determination:Why So Many Ways of Doing It?

    Get PDF
    Sexual reproduction is an ancient feature of life on earth, and the familiar X and Y chromosomes in humans and other model species have led to the impression that sex determination mechanisms are old and conserved. In fact, males and females are determined by diverse mechanisms that evolve rapidly in many taxa. Yet this diversity in primary sex-determining signals is coupled with conserved molecular pathways that trigger male or female development. Conflicting selection on different parts of the genome and on the two sexes may drive many of these transitions, but few systems with rapid turnover of sex determination mechanisms have been rigorously studied. Here we survey our current understanding of how and why sex determination evolves in animals and plants and identify important gaps in our knowledge that present exciting research opportunities to characterize the evolutionary forces and molecular pathways underlying the evolution of sex determination

    Causes and consequences of range size variation: the influence of traits, speciation, and extinction

    No full text
    The tremendous variation in species richness observed among related clades across the tree of life has long caught the imagination of biologists. Recently, there has been growing attention paid to the possible contribution of range size variation, either alone or in combination with putative key innovations, to these patterns. Here, we review three related topics relevant to range size evolution, speciation, and extinction. First, we provide a brief overview of the debate surrounding patterns and mechanisms for phylogenetic signal in range size. Second, we discuss some recent findings regarding the joint influence of traits and range size on diversification. Finally, we present the preliminary results of a study investigating whether range size is negatively correlated with contemporary extinction risk in flowering plants
    • 

    corecore