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In this Special Feature, we assemble studies that illustrate phylogenetic approaches 11 
to studying salient questions regarding the effect of specialization in lineage 12 
diversification. The studies use an array of techniques within a wide-ranging 13 
collection of biological systems (plants, butterflies, fish, and amphibians are all 14 
represented). Their results reveal that macroevolutionary examination of 15 
specialisation provides insight into the patterns of trade-offs in specialized systems; 16 
in particular, the genetic mechanisms of trade-offs appear to extend to very 17 
different aspects of life history in different groups. In turn, because a species may be 18 
a specialist from one perspective and a generalist in others, these trade-offs 19 
influence whether we perceive specialisation to have effects on the 20 
evolutionary success of a lineage when we only examine specialisation along a single 21 
axis. Finally, how geographical range influences speciation and extinction of 22 
specialist lineages remains a question rife with potential for further insight. 23 
  24 
1.INTRODUCTION 25 

 26 
Specialisation is a repeated pattern in living systems, suggesting that there are 27 

general mechanisms underlying its evolution. Clearly, every species interacts with only a 28 

small subset of all other species and in only a subset of habitats. Thus, some constraints 29 

on associations have simple explanations: biogeography and range limits preclude pairs 30 

of species, or a species and a particular suite of environmental variables, from being in 31 
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the same vicinity. We do not currently have precise information on the extent to which 32 

range limits enforce the levels of specialisation that we see in nature [1, 2]. Despite this 33 

large knowledge gap, we have clear instances where species have access to many 34 

potential mutualists or habitats, yet have evolved adaptations that restrict their 35 

proportional usage [3, 4]. The evolution of these adaptations may themselves directly 36 

affect the speciation process [5] or simply be associated with macroevolutionary and 37 

macroecological patterns (e.g., diversification through correlated characters or reduced 38 

geographical extent [6]). This Special Feature serves to highlight our current knowledge 39 

on how evolution has produced clades and communities notable in their variation in the 40 

level of specialization, despite a paucity of well-characterized pathways that might 41 

produce such variation [7]. We focus especially on studies that employ a 42 

macroevolutionary perspective to investigate (1) the evolutionary success of specialists 43 

and (2) how specialisation is shaped by variation along multiple morphological and 44 

environmental axes. 45 

 46 

(a) The Evolution of Specialisation 47 

Is specialisation a dead-end? A once-held view was that the evolution of 48 

specialisation was a one-way street, with transitions back to a broader niche breadth 49 

being restricted [8]. Recently, however, a growing number of studies of specialisation 50 

indicate that transitions from specialisation to generalisation are possible [9, 10]. 51 

However, examinations of transitions in a phylogenetic context sometimes provide 52 

conflicting results. In birds, transitions in the level of specialisation are rare [11]. Yet in 53 

plants, there are many examples of reversals in specialisation [12]; for example, 54 
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pollinator breadth exhibits little phylogenetic signal [13]. Phytophagous insects also 55 

exhibit equivocal results with transitions occurring in either direction [14, 15]. Thus, 56 

evidence is mounting that specialisation is not an absolute “dead-end”, even though a 57 

disproportionate number of transitions may be in the direction of generalist to specialist 58 

in some systems. However, the conditions and processes that lead to biases in transition 59 

rates in one direction or the other remain poorly understood.   60 

The envisioned pathway that would produce biased transitions from generalisation 61 

to specialisation involves the idea of trade-offs, which however have proved elusive to 62 

demonstrate empirically. The trade-offs might operate at the physiological level through 63 

antagonistic pleiotropy [16]. For instance, C4 plant photosynthetic pathways have greater 64 

efficiency in hot, dry environments, but lower photosynthetic rates in shaded, moist 65 

environments [17]. Ecology could enhance the evolution of specialisation through 66 

producing further genetic trade-offs. If a certain environment were more common (e.g., 67 

dry environments in the above example), deleterious mutations that affect the 68 

performance in other environments might accumulate [18]. If these changes represented 69 

loss-of-function mutations, reversals towards a generalist state would be rare. Whether 70 

physiological or genetic trade-offs occur in tandem or independently is not well 71 

characterized, nor is there much compelling evidence of irreversibility [12].  72 

Notably, the difficulty of defining and detecting specialisation hampers our ability 73 

to pinpoint its pathways and trade-offs. In the evolution of specialisation of plants on 74 

pollinators, steep trade-offs (where adaptions improving the attraction or use of one 75 

pollinator decrease the attraction or use of others) will generally favour specialisation 76 

[19]. Studies on plant-pollinator specialisation in particular have provided many 77 
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examples showing how caution must be exercised in inferring fitness trade-offs from 78 

morphological traits (“phenotypic specialisation”, e.g., long corolla tubes [20]). 79 

Classically, floral corolla tubes were one trait conceived as an appropriate indicator of 80 

reduction in biotic partnerships (narrow corolla tubes suggesting efficient pollination by 81 

hummingbirds and poor pollination by bees and vice versa for wide corolla tubes [21]). 82 

Many cases of apparent specialisation on certain functional groups pollinators have been 83 

observed to be, in fact, ecologically generalized (e.g. flowers with wide corollas are 84 

visited by insect and birds [22-24]).  85 

Characterization of trade-offs is further complicated because they can occur at 86 

different scales and involve different aspects of a species’ biology [25] (see Axes of 87 

Specialisation).  This complexity has led to the somewhat perplexing view that trade-offs 88 

are uncommon, at least in within-species comparisons [25]. Intriguingly, the elusive 89 

nature of trade-offs spurred investigation of whether they were an essential condition - a 90 

theoretical study by Muchhala and colleagues [26] demonstrated that the selective cost of 91 

lost pollen alone is sufficient to drive specialisation even in the absence of trade-offs. To 92 

date, there have been few phylogenetic comparisons, yet analyses of host-pathogen and 93 

plant-pollinator associations suggest that the ability to incorporate a certain plant species 94 

into diet breadth is correlated with phylogenetic distance [27-29]. This suggests that 95 

specialisation on clades of hosts or mutualists is widespread and that the use of certain 96 

hosts is indeed lost over evolutionary time-scales. Notably, this pattern is consistent with 97 

trade-offs, but also consistent with ecological models of the loss of selection for 98 

interacting with hosts or mutualists that are outside of a species’ range. 99 
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From a macroecological perspective, there is one additional reason to expect the 100 

appearance of dead-ends with transitions to the specialist state [6]. If specialists occupy a 101 

narrow niche, they often also occupy smaller ranges [1], and endemics are more 102 

susceptible to extinction [6, 30]. While some data suggest that the evolution of 103 

specialisation is associated with evolutionary success in plants [31], habitat specialisation 104 

is correlated with increased extinction risk in birds and bumble bees [32, 33]. If 105 

specialists go extinct more frequently, most specialists will appear as young lineages on 106 

phylogenetic trees [34] that have had less opportunity to transition to a generalist state 107 

[10]. Species occupying a smaller range can also be less likely to speciate [35, 36]. Both 108 

of these processes would produce a pattern whereby there are more extant generalist 109 

lineages, each with the potential to transition to a more specialized state. Yet there are 110 

examples that show empirical support for the opposite as well, with generalists exhibiting 111 

higher extinction risk, at least in Odonata [37]. 112 

In this volume, we examine how “evolutionary success” in terms of speciation 113 

and extinction rates varies with specialisation and document transitions between 114 

specialisation and generalisation. Specialisation and generalisation in the diversification 115 

of lepidopterans were examined for evidence of the musical chairs versus the oscillation 116 

hypotheses [38]. Following a “musical chairs” model we might see that specialist clades 117 

were more often transitioning between hosts, but remaining specialized, whereas in the 118 

“oscillation” model we would predict that niche-breadth shifts (e.g. in phytophagy in 119 

lepidopteran clades) from generalist to specialist would be more common. Rather than a 120 

pattern of decreased diversification in specialist lepidopteran clades, Hardy and Otto find 121 

more support for the Musical Chairs hypothesis [37]. In addition, they find a negative 122 
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relationship between host-plant breadth and diversification rates, with generalists 123 

diversifying at lower rates because of their broad niches. This calls into question whether 124 

specialisation can ever be considered a dead-end, at least in phytophagous insects. While 125 

transitions to a more generalist state might be rare, host switching within specialist clades 126 

is common and generates more species that are specialized, such that lowered 127 

diversification rates will not be apparent. These patterns held despite the finding that 128 

extinction rates were considerably lower in polyphagous lineages, suggesting that 129 

specialists could potentially appear as evolutionary dead-ends due to declines in 130 

persistence, but not due to trade-offs that prevent transitions back to a more generalized 131 

state. 132 

The Musical Chairs hypothesis may be clade-specific, as other patterns have been 133 

seen in some plant-pollinator relationships. The shift from a specialized relationship (e.g. 134 

pollination by few resin-collecting bees) to a generalized relationship (e.g. pollination by 135 

many pollen-feeding insects) can be followed quickly by a reversal to a more specialized 136 

relationship (e.g. pollination only by “buzz-pollinating” bees) [39]. This last example is 137 

consistent with the oscillation hypothesis, which postulates that generalist lineages give 138 

rise to specialist daughter species, but over time specialists can gradually add functions 139 

and become more generalist. Similarly, in an analysis of pollinator breadth in 140 

passionflowers, Abrahamczyk et al. [40] find that shifts are not disproportionately from 141 

generalisation to specialisation. Instead, reliance on the sword-bill hummingbird 142 

(Ensifera ensifera) appears to have evolved early on in a clade that then generated many 143 

new species by allopatric isolation, some of which escaped from specialisation by 144 

reducing their floral tubes, thereby being able to rely on a broader set of bird or bat 145 
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pollinators. In contrast to the idea that shifts in specialisation result in speciation 146 

(pollinator shifts), Abrahamczyk et al. [40] find more evidence favouring biogeographical 147 

shifts spurring the process of lineage splitting. In Tritoniopsis revoluta (Iridaceae) 148 

Anderson et al. [41] report that pollinators vary geographically across the plant’s range 149 

and are closely associated with variation in floral traits, suggesting a strong role of 150 

distribution and range in how biotic specialisation influences speciation (see Range 151 

extent, specialisation, and diversification). 152 

In summary, the studies in this Special Feature indicate that specialisation is not a 153 

certain “dead-end” from an evolutionary perspective. First, transition from specialisation 154 

to generalisation is possible and even prevalent in certain ecological contexts. Second, 155 

specialisation in traits related to foraging or reproduction can be associated with 156 

increased evolutionary success of some specialist clades, especially in specialist clades 157 

that experience greater transition rates to different specialist states (“musical chairs” 158 

pattern described above; Hardy and Otto [38]). Specialisation also need not by itself be 159 

the driver of speciation. In the sword-bill-pollinated clade of passionflowers, 160 

Abrahamczyk and colleagues find that specialized pollination is not the driver of 161 

speciation but instead the precondition for successful species persistence in small 162 

populations, which then adapt locally and evolve into separate species [40].  163 

Hardy and Otto [38] raise the interesting point that the question of whether 164 

specialisation influences speciation depends on how specialisation is defined: “One gray 165 

area is how to define the relevant niche with respect to diversification, as generalists 166 

along some axes (e.g., resource use) may be specialists along others (e.g., in host-167 

pathogen interactions). While theoretical models have shown that speciation is more 168 
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likely when phenotypes are multi-dimensional…this raises a challenge for empiricists 169 

who must identify the phenotypic axes exhibiting the strongest diversifying selection in 170 

order to detect relationships between niche breadth and speciation.” Other authors in this 171 

Special Feature also tackle the issue of multi-dimensional axes of specialisation.  172 

 173 

(b) The Axes of Specialisation 174 

Specialisation can be defined in a number of ways, and there are many ways to 175 

expand the “Jack of all trades, master of none” paradigm. One way to define 176 

specialisation is the breadth occupied by a species on niche axes. Most species probably 177 

are a generalist on some axes and a specialist on others [16]. For example, some species 178 

of Dalechampia (Euphorbiaceae) exhibit apparently compensatory 179 

specialisation/generalisation on two pollination niches axes: specialisation on the 180 

temporal axis (shorter duration of blooming season) is associated with generalisation in 181 

the number of pollinator species used and vice versa [42]. A growing body of evidence 182 

suggests that, while physiological trade-offs are uncommon, constraints may act to allow 183 

for specialisation along alternate facets of a species’ life history, e.g., where an advantage 184 

with one biotic partner or in inhabiting one niche comes at the expense of dealing with 185 

another [43-45]. Limits on floral specialisation may also accrue from conflicting selection 186 

generated by herbivores or by abiotic factors. For example, specialisation on large bees 187 

may select for large petals or bracts, but this may be countered by selection by herbivores 188 

(that use the same cues to find host tissues) [46], selection for water conservation in xeric 189 

environments [47, 48], or selection for rapid seed production in seasonal habitats [49-51]. 190 
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Expanding the number of axes to include both biotic and abiotic specialisation can 191 

also provide insight into the underlying forces that spur the evolution of specialisation. 192 

For example, pollinators often select for larger corolla size, but such increases exert a 193 

large cost in terms of water loss in dry environments [47, 48], as noted above. Without 194 

information on the physical-environmental niche, it would be hard to ascertain why more 195 

species do not display large flowers. Examining these trade-offs in a phylogenetic 196 

framework can be a powerful approach to understanding the constraints on the evolution 197 

of specialisation. Litsios et al. [52] provide evidence in this Special Feature of a negative 198 

correlation between environmental tolerances (in temperature, salinity and pH) and host 199 

specificities in clownfish and anemone mutualisms, which would likely confound 200 

phylogenetic analyses of diversification along any single specialisation niche axis. 201 

Further, if differential specialisation across resource axes is widespread, it may be a large 202 

contributor to the local coexistence of specialist and generalist species [52], and provide 203 

insight into the puzzling observation that specialists often do not outcompete generalists 204 

[53].  205 

Despite finding that multiple axes contribute to specialisation and interact to 206 

influence its evolution [16], we have little information on whether abiotic or biotic factors 207 

are more likely to drive specialisation, or whether dispersal and geographic range provide 208 

environmental heterogeneity to spur initial transitions to specialisation. Muschick et al. 209 

[54] examine these questions in this volume using the radiation of cichlids in Lake 210 

Tanganyika, testing the idea that specialisation along multiple niche axes occurs 211 

according to a common sequence of transitions. In these cichlids, subdivision of trophic 212 

traits occurs in the early stages of adaptive radiation, while sexual communication traits 213 
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diversify late in the radiation. The phylogenetic analysis of Muschick and colleagues [54]  214 

also finds limited support that specialisation along biotic niche axes (diet) precedes 215 

specialisation along abiotic niche axes (macrohabitat). 216 

 217 

(c) Range Extent, Specialisation, and Diversification 218 

Environmental heterogeneity is a key factor both in the evolution of specialisation 219 

and in the evolutionary success of the resulting lineage [7]. For example, if spatial 220 

heterogeneity is such that the abundance of a commonly used host changes rapidly over 221 

space (beta-diversity is high), this should accelerate the evolution of specialisation [41]. 222 

Much of the work in this area is done with herbivorous insects, with some studies 223 

suggesting that generalisation is positively associated with large range size [55] and 224 

others finding cases where a specialist can have a much larger range if its host species is 225 

widespread [56]. Models of the evolution of specialisation that incorporate environmental 226 

heterogeneity and associative mating indicate that these variables can result in a decrease 227 

in gene flow between environments and contribute to speciation [7]. Anderson et al. [41] 228 

examined pollinators in different parts of a plant species’ range and found a close 229 

association between floral traits and the traits of the pollinators in the region but did not 230 

find strong evidence that these patterns greatly influenced gene flow and dispersal. 231 

Presumably if selection pressures were consistent for generations, speciation could occur, 232 

yet pollinators may be too variable between years [57]. Further work on the interplay 233 

between dispersal, range, and beta-diversity would lend insight into how specialisation 234 

evolves and persists as well as the propensity of these factors to lead to speciation. 235 
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Widely dispersing organisms are more likely to have opportunities to expand their 236 

geographical range [58]. Species occupying large ranges should experience divergent 237 

selection pressures upon their constituent populations; heterogeneity of selection 238 

pressures may in turn provide selection towards generalisation across the entire species 239 

(leading to its scoring as a generalist in a phylogenetic trait reconstruction that might use 240 

just one accession to represent the species), but selection for different specialists at the 241 

local population level. Bonetti and Wiens [59] find evidence in amphibians, however, that 242 

the causal arrow could point in the opposite direction, with species with wide climatic 243 

tolerances having the ability to persist in a greater number of locations than generalists. 244 

Range size could then influence the heterogeneity in selection pressures from biotic 245 

partnerships, allowing specialisation to evolve in other niche axes. Bonetti and Wiens 246 

[59] find trait associations consistent with these expectations, with species having broad 247 

tolerances for variation in temperature and precipitation rather than trade-offs in these 248 

tolerances. For example, specialisation along the climatic niche can reduce range size and 249 

set up conditions conducive to the evolution of specialisation along other niche 250 

dimensions. Thus, we can observe associations in the levels of specialisation between 251 

different axes of specialisation rather than trade-offs. 252 

 253 

(d) Conclusions and Future Directions 254 

Forister et al. [60] list a number of interesting unanswered questions in the 255 

evolutionary ecology of specialisation. While they concentrated on plant-insect 256 

associations, we attempt here to examine the process in a range of invertebrate and 257 

vertebrate systems (butterflies, bees, hummingbirds, amphibians, fish lineages). The 258 
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problem of how to define specialisation remains. Generally, our view of trade-offs 259 

appears to be widening, and this broadened perspective has the consequence of making 260 

trade-offs more readily apparent. Whether or not trade-offs are observed depends on how 261 

wide we cast the net; trade-offs do appear to be an important characteristic of 262 

specialisation if we allow that they may operate between very disparate facets of a 263 

species’ life history (e.g., pollination and herbivory). Furthermore, the issue of dispersal 264 

and range size presents further complicating factors, influencing the number and 265 

combinations of conditions encountered (and therefore the trade-offs observed). Recent 266 

studies indicate that the association between range size and niche breadth may vary in its 267 

strength depending on niche position as well as the axes of the niche (dietary or habitat) 268 

examined [61], suggesting that the complexity of these factors will provide an active area 269 

of research for some time. 270 

From a conservation perspective, specialists are some of our most charismatic 271 

species, with the sword-billed hummingbird and the ca. 50 species of plants that 272 

completely depend on it for pollination being a striking example. Thus, specialist species 273 

often receive greater conservation attention than do generalists [62]. Although there is 274 

evidence that specialists can exhibit superior competitive strategies in their element (for 275 

foraging and/or reproductive assurance) [63], there is also evidence that their greater 276 

reliance on a smaller subset of species puts them at greater risk of extinction [64]. 277 

Historically, a central question raised about specialisation was whether it commonly 278 

represented a dead-end [65]. From a macroevolutionary perspective, specialist clades 279 

may play a particularly important role in generating additional species at high rates due to 280 

host switching (the Musical Chairs process; see [38]), and this process would tend to 281 



13 
 

make many specialists species appear “young” on phylogenies. With the current 282 

conservation focus on the phylogenetic uniqueness of a given species [66], one 283 

implication is that the “young” nature of many specialists may put them at lower 284 

prioritization for conservation. Additionally, while there is little evidence to suggest that 285 

specialisation is irreversible or associated with lower speciation rates, specialist clades 286 

can experience higher extinction rates. Elevated speciation rates may buffer specialist 287 

clades from being lost to extinction to a certain extent [67], but further research should 288 

examine which specialist clades may be at the limits of the compensatory effects of 289 

speciation and experiencing net declines in species richness.  290 

Network studies are providing some valuable insight into how specialisation 291 

varies among communities. However, while connectance (the number of links between 292 

trophic levels compared to the maximum possible) is often equated with stability, loss of 293 

specialists will appear as increased connectance in networks [68]. Additionally, gain of a 294 

high proportion of weedy generalist species in numerous communities will result in 295 

lowered beta-diversity and more homogeneous community composition over larger 296 

spatial scales [69]. While these two outcomes would suggest that we lose biodiversity 297 

despite increasing stability in networks, there are at least two reasons to suggest that 298 

specialists may be as robust as generalists to environmental perturbations. First, specialist 299 

species often rely on generalist partners (i.e., networks tend to be asymmetrical and 300 

nested) [70, 71]. Second, as exemplified in clownfish in this Special Feature, generalist-301 

specialist trade-offs across multiple resource axes will act as a buffering force, such that 302 

specialists in bipartite networks may be habitat generalists, thus providing a further 303 

balancing mechanism that allows for coexistence of species [52]. Recent studies have 304 
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incorporated macroevolutionary and phylogenetic approaches into network studies to 305 

reveal the influence of shared traits on forming network interactions [28, 64], and the new 306 

metrics currently emerging [72] will likely further provide an important link between the 307 

influences of evolutionary history, traits, and environmental heterogeneity.  308 

In summary, specialists can experience greater evolutionary success compared to 309 

their generalist counterparts, possibly due to the very trade-offs that often drive 310 

specialisation. In cases where we observe specialisation along a number of different niche 311 

axes, historical range size may provide insight into how suites of specialized traits arise in 312 

lineages. Some of these insights would be impossible to gain without using a 313 

macroevolutionary perspective, and the studies in this issue highlight how comparative 314 

phylogenetic analysis sheds light on general principles underlying the evolution and 315 

persistence of specialized interactions. 316 

 317 
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