17 research outputs found

    IEA SHC Task 42/ECES Annex 29 – A Simple Tool for the Economic Evaluation of Thermal Energy Storages

    Get PDF
    Proceedings of the 4th International Conference on Solar Heating and Cooling for Buildings and Industry (SHC 2015)Within the framework of IEA SHC Task 42 / ECES Annex 29, a simple tool for the economic evaluation of thermal energy storages has been developed and tested on various existing storages. On that account, the storage capacity costs (costs per installed storage capacity) of thermal energy storages have been evaluated via a Top-down and a Bottom-up approach. The Top-down approach follows the assumption that the costs of energy supplied by the storage should not exceed the costs of energy from the market. The maximum acceptable storage capacity costs depend on the interest rate assigned to the capital costs, the intended payback period of the user class (e.g. industry or building), the reference energy costs, and the annual number of storage cycles. The Bottom-up approach focuses on the realised storage capacity costs of existing storages. The economic evaluation via Top-down and Bottom-up approach is a valuable tool to make a rough estimate of the economic viability of an energy storage for a specific application. An important finding is that the annual number of storage cycles has the largest influence on the cost effectiveness. At present and with respect to the investigated storages, seasonal heat storage is only economical via large sensible hot water storages. Contrary, if the annual number of storage cycles is sufficiently high, all thermal energy storage technologies can become competitive.This study is part of IEA SHC Task 42 / ECES Annex 29 „Compact Thermal Energy Storage - Material Development and System Integration“ (http://task42.iea-shc.org). The work of ZAE Bayern is part of the project PC-Cools_V and supported by the German Federal Ministry for Economic Affairs and Energy under the project code 03ESP138A. University of Zaragoza thanks the Spanish Government for the funding of their work under the projects ENE2008-06687-C02-02, ENE2011-28269-C03-01 and ENE2014-57262-R. University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2014 SGR 123). The research leading to these results has received funding from the European Union's Seventh Framework Program (FP7/2007-2013) under grant agreement n° PIRSES-GA-2013-610692 (INNOSTORAGE) and European Union’s Horizon 2020 research and innovationprogramme under grant agreement No 657466 (INPATH-TES). Laia Miró would like to thank the Spanish Government for her research fellowship (BES-2012-051861). The University of the Basque Country acknowledges the financial support of the Spanish’s Ministry of Economy and Competitiveness through the MicroTES (ENE2012- 38633) research project. The responsibility for the content of this publication is with the author

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes

    The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.Peer reviewe

    Morphology and photoluminescence study of titania nanoparticles

    Get PDF
    Titania nanoparticles are prepared by sol–gel chemistry with a poly(ethylene oxide) methyl ether methacrylate-block-poly(dimethylsiloxane)-block-poly(ethylene oxide) methyl ether methacrylate triblock copolymer acting as the templating agent. The sol–gel components—hydrochloric acid, titanium tetraisopropoxide, and triblock copolymer—are varied to investigate their effect on the resulting titania morphology. An increased titania precursor or polymer content yields smaller primary titania structures. Microbeam grazing incidence small-angle X-ray scattering measurements, which are analyzed with a unified fit model, reveal information about the titania structure sizes. These small structures could not be observed via the used microscopy techniques. The interplay among the sol–gel components via our triblock copolymer results in different sized titania nanoparticles with higher packing densities. Smaller sized titania particles, (∌13–20 nm in diameter) in the range of exciton diffusion length, are formed by 2% by weight polymer and show good crystallinity with less surface defects and high oxygen vacancies

    Finite Element Analysis of DC Partial Discharges in Failure Types of Thin Insulation Layers in Traction Battery Systems

    No full text
    Improving insulation testing in traction battery systems is crucial for quality standards and the safety of passengers in electric vehicles. The DC phase resolved partial discharge diagnostics is sensible and enables information about the cause of insulation faults. Faults are referred to PRPD patterns using a DC test voltage with a superimposed AC voltage ripple as a phase reference. These patterns vary depending on the start electron location. Thus, derived models are created by analyzing defect geometries in microsections. Electric field distribution and PD activity are calculated using a time domain finite element method in combination with a stochastic tree model. The electric field distribution is mainly influenced by interfacial polarization at the surface of solid impurities. The voltage ramp and the superimposed ripple of the dc test voltage can cause partial discharges in the volume of the defect. The information about PD locations and the type of geometry of the defect can be obtained from the shape of the PD patterns. Thus, the paper results expand the knowledge about DC phase resolved partial discharge diagnostics and improve the root cause analysis of insulation faults in traction battery systems

    Whole microbe arrays accurately predict interactions and overall antimicrobial activity of galectin-8 toward distinct strains of Streptococcus pneumoniae

    No full text
    Abstract Microbial glycan microarrays (MGMs) populated with purified microbial glycans have been used to define the specificity of host immune factors toward microbes in a high throughput manner. However, a limitation of such arrays is that glycan presentation may not fully recapitulate the natural presentation that exists on microbes. This raises the possibility that interactions observed on the array, while often helpful in predicting actual interactions with intact microbes, may not always accurately ascertain the overall affinity of a host immune factor for a given microbe. Using galectin-8 (Gal-8) as a probe, we compared the specificity and overall affinity observed using a MGM populated with glycans harvested from various strains of Streptococcus pneumoniae to an intact microbe microarray (MMA). Our results demonstrate that while similarities in binding specificity between the MGM and MMA are apparent, Gal-8 binding toward the MMA more accurately predicted interactions with strains of S. pneumoniae, including the overall specificity of Gal-8 antimicrobial activity. Taken together, these results not only demonstrate that Gal-8 possesses antimicrobial activity against distinct strains of S. pneumoniae that utilize molecular mimicry, but that microarray platforms populated with intact microbes present an advantageous strategy when exploring host interactions with microbes

    Integrated blocking layers for hybrid organic solar cells

    No full text
    In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here we report the preparation of a thin, uniform and crack free hybrid blocking layer composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic. To do so we combine sol–gel chemistry with novel poly(dimethylsiloxane) containing amphiphilic block copolymer, poly(ethyleneglycol) methyl ether methacrylate–block–poly(dimethylsiloxane)–block–poly(ethyleneglycol) methyl ether methacrylate as the templating agent. Conductive probe scanning force microscopy proved that the existing percolating titania networks are separated by an insulating ceramic matrix. The structural uniformity of the percolating structures was investigated by microbeam grazing incidence small angle X-ray scattering making the integrated blocking layer suitable for hybrid organic solar device applications. Preliminary tests with the integrated blocking layer showed reasonable comparison to conventional TiO2 blocking layer containing devices mentioned in the literature
    corecore