286 research outputs found

    Progress and Prospects for a Nucleic Acid Screening Test Set

    Get PDF
    Objective: DNA synthesis companies screen orders to detect controlled sequences with misuse risks. Assessing screening accuracy is challenging owing to the breadth of biological risks and ambiguities in risk definitions. Here, we detail an International Gene Synthesis Consortium working group’s rationale and process to develop a prototype DNA synthesis screening test dataset, aiming to establish a baseline of screening system accuracy to compare with various screening approaches.Methodology: Construction of the prototype test dataset involved four tool developers screening nucleic acid sequences from three taxonomic clusters of controlled organisms (Orbivirus, Francisella tularensis, and Coccidioides). Results were mapped onto predefined, comparable categories, checking for consensus or conflicts. Conflicts were grouped based on gene annotation and resolved through discussion.Results: The process highlighted several long-standing challenges in DNA synthesis screening, including the qualitative differences in approaches taken by screening tools. Our findings highlight the lack of clarity in assessing pathogen sequences with respect to regulatory control language, compounded by scientific uncertainty. We illustrate the current degree of consensus and existing challenges using classification statistics and specific examples.Conclusions and Next Steps: This prototype underscores the necessity of expert-regulator coordination in assessing gene-associated risks, offering a template for creating test sets across all taxonomic groups on international control lists. Expanding the working group would enrich dataset comprehensiveness, enabling a transition from species-focused to function-focused regulatory controls. This sets the foundation for quality control, certification, and improved risk assessment in DNA synthesis screening

    Implications for oxidative stress and astrocytes following 26S proteasomal depletion in mouse forebrain neurones

    Get PDF
    Neurodegenerative diseases are characterized by progressive degeneration of selective neurones in the nervous system, but the underlying mechanisms involved in neuroprotection and neurodegeneration remain unclear. Dysfunction of the ubiquitin proteasome system is one of the proposed hypotheses for the cause and progression of neuronal loss. We have performed quantitative two-dimensional fluorescence difference in-gel electrophoresis combined with peptide mass fingerprinting to reveal proteome changes associated with neurodegeneration following 26S proteasomal depletion in mouse forebrain neurones. Differentially expressed proteins were validated by Western blotting, biochemical assays and immunohistochemistry. Of significance was increased expression of the antioxidant enzyme peroxiredoxin 6 (PRDX6) in astrocytes, associated with oxidative stress. Interestingly, PRDX6 is a bifunctional enzyme with antioxidant peroxidase and phospholipase A2 (PLA2) activities. The PLA2 activity of PRDX6 was also increased following 26S proteasomal depletion and may be involved in neuroprotective or neurodegenerative mechanisms. This is the first in vivo report of oxidative stress caused directly by neuronal proteasome dysfunction in the mammalian brain. The results contribute to understanding neuronal–glial interactions in disease pathogenesis, provide an in vivo link between prominent disease hypotheses and importantly, are of relevance to a heterogeneous spectrum of neurodegenerative diseases

    Tuning dynamic DNA- and peptide-driven self-assembly in DNA–peptide conjugates

    Get PDF
    DNA–peptide conjugates offer an opportunity to marry the benefits of both biomolecular classes, combining the high level of programmability found with DNA, with the chemical diversity of peptides. These hybrid systems offer potential in fields such as therapeutics, nanotechnology, and robotics. Using the first DNA–β-turn peptide conjugate, we present three studies investigating the self-assembly of DNA–peptide conjugates over a period of 28 days. Time-course studies, such as these have not been previously conducted for DNA–peptide conjugates, although they are common in pure peptide assembly, for example in amyloid research. By using aging studies to assess the structures produced, we gain insights into the dynamic nature of these systems. The first study explores the influence varying amounts of DNA–peptide conjugates have on the self-assembly of our parent peptide. Study 2 explores how DNA and peptide can work together to change the structures observed during aging. Study 3 investigates the presence of orthogonality within our system by switching the DNA and peptide control on and off independently. These results show that two orthogonal self-assemblies can be combined and operated independently or in tandem within a single macromolecule, with both spatial and temporal effects upon the resultant nanostructures

    The mouse Gene Expression Database (GXD): 2019 update.

    Get PDF
    The mouse Gene Expression Database (GXD) is an extensive, well-curated community resource freely available at www.informatics.jax.org/expression.shtml. Covering all developmental stages, GXD includes data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments in wild-type and mutant mice. GXD\u27s gene expression information is integrated with the other data in Mouse Genome Informatics and interconnected with other databases, placing these data in the larger biological and biomedical context. Since the last report, the ability of GXD to provide insights into the molecular mechanisms of development and disease has been greatly enhanced by the addition of new data and by the implementation of new web features. These include: improvements to the Differential Gene Expression Data Search, facilitating searches for genes that have been shown to be exclusively expressed in a specified structure and/or developmental stage; an enhanced anatomy browser that now provides access to expression data and phenotype data for a given anatomical structure; direct access to the wild-type gene expression data for the tissues affected in a specific mutant; and a comparison matrix that juxtaposes tissues where a gene is normally expressed against tissues, where mutations in that gene cause abnormalities

    The mouse Gene Expression Database (GXD): 2021 update.

    Get PDF
    The Gene Expression Database (GXD; www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental gene expression information. For many years, GXD has collected and integrated data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot, and western blot experiments through curation of the scientific literature and by collaborations with large-scale expression projects. Since our last report in 2019, we have continued to acquire these classical types of expression data; developed a searchable index of RNA-Seq and microarray experiments that allows users to quickly and reliably find specific mouse expression studies in ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) and GEO (https://www.ncbi.nlm.nih.gov/geo/); and expanded GXD to include RNA-Seq data. Uniformly processed RNA-Seq data are imported from the EBI Expression Atlas and then integrated with the other types of expression data in GXD, and with the genetic, functional, phenotypic and disease-related information in Mouse Genome Informatics (MGI). This integration has made the RNA-Seq data accessible via GXD\u27s enhanced searching and filtering capabilities. Further, we have embedded the Morpheus heat map utility into the GXD user interface to provide additional tools for display and analysis of RNA-Seq data, including heat map visualization, sorting, filtering, hierarchical clustering, nearest neighbors analysis and visual enrichment

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    Cas9 gRNA engineering for genome editing, activation and repression

    Get PDF
    We demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.National Human Genome Research Institute (U.S.) (P50 HG005550)United States. Department of Energy (DE-FG02-02ER63445)Wyss Institute for Biologically Inspired EngineeringUnited States. Army Research Office (DARPA W911NF-11-2-0054)National Science Foundation (U.S.)United States. National Institutes of Health (5R01CA155320-04)United States. National Institutes of Health (P50 GM098792)National Cancer Institute (U.S.) (5T32CA009216-34)Massachusetts Institute of Technology. Department of Biological EngineeringHarvard Medical School. Department of GeneticsDefense Threat Reduction Agency (DTRA) (HDTRA1-14-1-0006

    Variational Bayesian causal connectivity analysis for fMRI

    Get PDF
    The ability to accurately estimate effective connectivity among brain regions from neuroimaging data could help answering many open questions in neuroscience. We propose a method which uses causality to obtain a measure of effective connectivity from fMRI data. The method uses a vector autoregressive model for the latent variables describing neuronal activity in combination with a linear observation model based on a convolution with a hemodynamic response function. Due to the employed modeling, it is possible to efficiently estimate all latent variables of the model using a variational Bayesian inference algorithm. The computational efficiency of the method enables us to apply it to large scale problems with high sampling rates and several hundred regions of interest. We use a comprehensive empirical evaluation with synthetic and real fMRI data to evaluate the performance of our method under various conditions.This work was partially supported by the National Institute of Child Health and Human Development (R01 HD042049). Martin Luessi was partially supported by the Swiss National Science Foundation Early Postdoc Mobility fellowship 148485. This work was supported in part by the Department of Energy under Contract DE-NA0000457, the “Ministerio de Ciencia e Innovación” under Contract TIN2010-15137, and the CEI BioTic with the Universidad de Granada Data were provided (in part) by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University

    Mosque-based emotional support among young Muslim Americans

    Full text link
    Despite a growing literature on social support networks in religious settings (i.e., church-based social support), little is known about mosque-based support among Muslims. This study investigates the demographic and religious behavior correlates of mosque-based social support among a multi-racial and ethnic sample of 231 young Muslims from southeast Michigan. Several dimensions of mosque-based support are examined including receiving emotional support, giving emotional support, anticipated emotional support and negative interactions with members of one’s mosque. Results indicated that women both received and antic- ipated receiving greater support than did men. Higher educational attainment was associated with receiving and giving less support compared to those with the lowest level of educational attainment. Moreover, highly educated members reported fewer negative interactions than less educated members. Mosque attendance and level of congregational involvement positively predicted receiving, giving, and anticipated emotional support from congregants, but was unrelated to negative interactions. Overall, the study results converge with previously established correlates of church- based emotional support.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107410/1/art%3A10.1007%2Fs13644-013-0119-0(1).pd
    corecore