31 research outputs found

    Playing It Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California

    Get PDF
    Regulatory agencies, including the U.S. Environmental Protection Agency (US EPA) and state authorities like the California Air Resources Board (CARB), have sought to address the concerns of environmental justice (EJ) advocates who argue that chemical-by-chemical and source-specific assessments of potential health risks of environmental hazards do not reflect the multiple environmental and social stressors faced by vulnerable communities. We propose an Environmental Justice Screening Method (EJSM) as a relatively simple, flexible and transparent way to examine the relative rank of cumulative impacts and social vulnerability within metropolitan regions and determine environmental justice areas based on more than simply the demographics of income and race. We specifically organize 23 indicator metrics into three categories: (1) hazard proximity and land use; (2) air pollution exposure and estimated health risk; and (3) social and health vulnerability. For hazard proximity, the EJSM uses GIS analysis to create a base map by intersecting land use data with census block polygons, and calculates hazard proximity measures based on locations within various buffer distances. These proximity metrics are then summarized to the census tract level where they are combined with tract centroid-based estimates of pollution exposure and health risk and socio-economic status (SES) measures. The result is a cumulative impacts (CI) score for ranking neighborhoods within regions that can inform diverse stakeholders seeking to identify local areas that might need targeted regulatory strategies to address environmental justice concerns

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Ambient air pollution exposure and full-term birth weight in California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births.</p> <p>Methods</p> <p>We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth.</p> <p>Results</p> <p>3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother's residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g) per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g) per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g) per pphm ozone, -7.7 g (-7.9 g, -6.6 g) per 10 <it>μ</it>g/m<sup>3 </sup>particulate matter under 10 μm, -12.8 g (-14.3 g, -11.3 g) per 10 <it>μ</it>g/m<sup>3 </sup>particulate matter under 2.5 μm, and -9.3 g (-10.7 g, -7.9 g) per 10 <it>μ</it>g/m<sup>3 </sup>of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters.</p> <p>Conclusions</p> <p>This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether a small shift in the population distribution of birth weight has broader health implications. However, the ubiquity of air pollution exposures, the responsiveness of pollutant levels to regulation, and the fact that the highest pollution levels in California are lower than those regularly experienced in other countries suggest that precautionary efforts to reduce pollutants may be beneficial for infant health from a population perspective.</p

    Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Background: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. Results: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. Conclusions: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.This article is a joint effort of the working group TRANSBEE and an outcome of two workshops kindly supported by sDiv, the Synthesis Centre for Biodiversity Sciences within the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Science Foundation (FZT 118). New datasets were performed thanks to the Insect Pollinators Initiative (IPI grant BB/I000100/1 and BB/I000151/1), with participation of the UK-USA exchange funded by the BBSRC BB/I025220/1 (datasets #4, 11 and 14). The IPI is funded jointly by the Biotechnology and Biological Sciences Research Council, the Department for Environment, Food and Rural Affairs, the Natural Environment Research Council, the Scottish Government and the Wellcome Trust, under the Living with Environmental Change Partnershi

    Reading, writing, and toxics: children's health, academic performance, and environmental justice in Los Angeles

    No full text
    A significant body of previous research on environmental justice has demonstrated a disproportionate burden of environmental hazards on low-income and minority residents. In this paper we evaluate spatially indexed data on estimated respiratory and cancer risks associated with exposures to ambient air toxics to show that children of color in the Los Angeles Unified School District suffer potentially disparate health impacts, and that disparities in environmental risks may be associated with diminished school performance -- even after controlling for socioeconomic and demographic covariates that generally explain much of the variation in student scores. Remediating environmental health risks in distressed neighborhoods could, therefore, improve both health and human capital.
    corecore