16 research outputs found

    It’s in the Fine Print: Erasable Three-Dimensional Laser-Printed Micro- and Nanostructures

    Get PDF
    3D printing, on all scales, is currently a vibrant topic in scientific and industrial research as it has enormous potential to radically change manufacturing. Owing to the inherent nature of the manufacturing process, 3D printed structures may require additional material to structurally support complex features. Such support material must be removed after printing—sometimes termed subtractive manufacturing—without adversely affecting the remaining structure. An elegant solution is the use of photoresists containing labile bonds that allow for controlled cleavage with specific triggers. Herein, we explore state‐of‐the‐art cleavable photoresists for 3D direct laser writing, as well as their potential to combine additive and subtractive manufacturing in a hybrid technology. We discuss photoresist design, feature resolution, cleavage properties, and current limitations of selected examples. Furthermore, we share our perspective on possible labile bonds, and their corresponding cleavage trigger, which we believe will have a critical impact on future applications and expand the toolbox of available cleavable photoresists

    ANTARES constrains a blazar origin of two IceCube PeV neutrino events

    Get PDF
    Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons ¿ and hence their neutrino progenitors ¿ from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A maximum-likelihood approach, using the reconstructed energies and arrival directions of through-going muons, is used to identify events with properties consistent with a blazar origin. Results. Both blazars predicted to be the most neutrino-bright in the TANAMI sample (1653−329 and 1714−336) have a signal flux fitted by the likelihood analysis corresponding to approximately one event. This observation is consistent with the blazar-origin hypothesis of the IceCube event IC 14 for a broad range of blazar spectra, although an atmospheric origin cannot be excluded. No ANTARES events are observed from any of the other four blazars, including the three associated with IceCube event IC20. This excludes at a 90% confidence level the possibility that this event was produced by these blazars unless the neutrino spectrum is flatter than −2.4

    It's in the fine print: Erasable three-dimensional laser-printed micro- and nanostructures

    Get PDF
    3D printing, on all scales, is currently a vibrant topic in scientific and industrial research as it has enormous potential to radically change manufacturing. Owing to the inherent nature of the manufacturing process, 3D printed structures may require additional material to structurally support complex features. Such support material must be removed after printing—sometimes termed subtractive manufacturing—without adversely affecting the remaining structure. An elegant solution is the use of photoresists containing labile bonds that allow for controlled cleavage with specific triggers. Herein, we explore state-of-the-art cleavable photoresists for 3D direct laser writing, as well as their potential to combine additive and subtractive manufacturing in a hybrid technology. We discuss photoresist design, feature resolution, cleavage properties, and current limitations of selected examples. Furthermore, we share our perspective on possible labile bonds, and their corresponding cleavage trigger, which we believe will have a critical impact on future applications and expand the toolbox of available cleavable photoresists.</p

    It's a Trap: Thiol-Michael Chemistry on a DASA Photoswitch

    No full text
    Donor–acceptor Stenhouse adducts (DASA) are popular photoswitches capable of toggling between two isomers depending on the light and temperature of the system. The cyclized polar form is accessed by visible-light irradiation, whereas the linear nonpolar form is recovered in the dark. Upon the formation of the cyclized form, the DASA contains a double bond featuring a ÎČ-carbon prone to nucleophilic attack. Here, an isomer selective thiol-Michael reaction between the cyclized DASA and a base-activated thiol is introduced. The thiol-Michael addition was carried out with an alkyl (1-butanethiol) and an aromatic thiol (p-bromothiophenol) as reaction partners, both in the presence of a base. Under optimized conditions, the reaction proceeds preferentially in the presence of light and base. The current study demonstrates that DASAs can be selectively trapped in their cyclized state.</p
    corecore