48 research outputs found

    Are published standards for haematological indices in pregnancy applicable across populations: an evaluation in healthy pregnant Jamaican women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The haematological profile of the pregnant woman has an impact on the outcome of the pregnancy. Published guidelines indicate acceptable levels for haematological indices in pregnancy but they are population specific. Indicators of haemoglobin concentration are the most commonly utilized of the indices. These published international norms are used across populations, however, there is no evidence confirming their applicability to a population such as the Jamaican pregnant woman. This study was therefore undertaken with the intent of documenting the haematological profile of pregnant primigravid Jamaican women and comparing these to the established norms to determine whether the norms apply or whether there was a need to establish local norms.</p> <p>Methods</p> <p>This was a longitudinal study done on a cohort of 157 healthy primigravid women ages 15 to 25 and without anaemia, and who were recruited from the antenatal clinic of the University Hospital of the West Indies, Kingston, Jamaica. The haemoglobin concentration, packed cell volume, mean cell volume, mean cell haemoglobin, mean cell haemoglobin concentration, white blood cell count, red blood cell count and platelet count were measured on samples of blood obtained from each consenting participant during each of the three trimesters. The results were analysed using SPSS for windows (Version 11) and the data expressed as means ± S.D. Means were compared using the student's paired <it>t-test</it>. Comparison was then made with the international norms as recommended by the United States Center for Disease Control (1989). Ethical approval for this study was obtained from the University Hospital of the West Indies/University of the West Indies Ethics Committee.</p> <p>Results</p> <p>The results showed changes by trimester in all measured variables. For most of the indices the changes achieved levels of significance across trimesters. These changes were however in keeping with the expected physiological response in pregnancy and the values were similar to the published international norms.</p> <p>Conclusion</p> <p>The findings suggest that the international norms for haematological indices in pregnancy are applicable across populations and to the pregnant Jamaican primigravid woman. This finding may be reassuring to others with a similar population and stage of development as Jamaica.</p

    The evolution of the dust and gas content in galaxies

    Get PDF
    We use deep Herschel observations taken with both PACS and SPIRE imaging cameras to estimate the dust mass of a sample of galaxies extracted from the GOODS-S, GOODS-N and the COSMOS fields. We divide the redshift–stellar mass (M star )–star formation rate (SFR) parameter space into small bins and investigate average properties over this grid. In the first part of the work we investigate the scaling relations between dust mass, stellar mass and SFR out to z = 2.5. No clear evolution of the dust mass with redshift is observed at a given SFR and stellar mass. We find a tight correlation between the SFR and the dust mass, which, under reasonable assumptions, is likely a consequence of the Schmidt-Kennicutt (S-K) relation. The previously observed correlation between the stellar content and the dust content flattens or sometimes disappears when considering galaxies with the same SFR. Our finding suggests that most of the correlation between dust mass and stellar mass obtained by previous studies is likely a consequence of the correlation between the dust mass and the SFR combined with the main sequence, i.e., the tight relation observed between the stellar mass and the SFR and followed by the majority of star-forming galaxies. We then investigate the gas content as inferred from dust mass measurements. We convert the dust mass into gas mass by assuming that the dust-to-gas ratio scales linearly with the gas metallicity (as supported by many observations). For normal star-forming galaxies (on the main sequence) the inferred relation between the SFR and the gas mass (integrated S-K relation) broadly agrees with the results of previous studies based on CO measurements, despite the completely different approaches. We observe that all galaxies in the sample follow, within uncertainties, the same S-K relation. However, when investigated in redshift intervals, the S-K relation shows a moderate, but significant redshift evolution. The bulk of the galaxy population at z ∼ 2 converts gas into stars with an efficiency (star formation efficiency, SFE = SFR/M gas , equal to the inverse of the depletion time) about 5 times higher than at z ∼ 0. However, it is not clear what fraction of such variation of the SFE is due to an intrinsic redshift evolution and what fraction is simply a consequence of high-z galaxies having, on average, higher SFR, combined with thesuper-linear slope of the S-K relation (whileother studies finda linear slope). We confirm that the gas fraction (f gas = M gas /(M gas + M star )) decreases with stellar mass and increases with the SFR. We observe no evolution with redshift once M star and SFR are fixed. We explain these trends by introducing a universal relation between gas fraction, stellar mass and SFR that does not evolve with redshift, at least out to z ∼ 2.5. Galaxies move across this relation as their gas content evolves across the cosmic epochs. We use the 3D fundamental f gas –M star –SFR relation, along with the evolution of the main sequence with redshift, to estimate the evolution of the gas fraction in the average population of galaxies as a function of redshift and as a function of stellar mass: we find that M star > ∼ 10 11 M ? galaxies show the strongest evolution at z > ∼ 1.3 and a flatter trend at lower redshift, while f gas decreases more regularly over the entire redshift range probed in M star < ∼ 10 11 Mo galaxies, in agreement with a downsizing scenario

    Charity registration and reporting:a cross-Jurisdictional and theoretical analysis of regulatory impact

    Get PDF
    Increasingly governments worldwide regulate charities, seeking to restrict the number of organizations claiming taxation exemptions, reduce abuse of state support and fraud. Under public interest theory governments may increase philanthropy through public trust and confidence in charities. Under public choice theory regulators will maximize political returns, ‘manage’ charity-government relationships, and avoid regulatory capture. Phillips and Smith (2014) suggest that charities’ regulatory regimes should coalesce, despite jurisdictional diversity. We analyse charity regulatory regimes against underlining theories of regulation, and assess regulatory costs and benefits. Thus regulators can reduce regulatory inefficiency, and balance accountability and transparency demands with charities’ abilities to deliver

    Gas Accretion and Star Formation Rates

    Full text link
    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star-formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star-formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star-formation are analyzed, specifically, the short gas consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the alpha-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe

    A dusty star-forming galaxy at <i>z</i> = 6 revealed by strong gravitational lensing

    Get PDF
    Since their discovery, submillimetre-selected galaxies have revolutionized the field of galaxy formation and evolution. From the hundreds of square degrees mapped at submillimetre wavelengths, only a handful of sources have been confirmed to lie at z > 5 and only two at z ≥ 6. All of these submillimetre galaxies are rare examples of extreme starburst galaxies with star formation rates of ≳1,000 M⊙ yr−1 and therefore are not representative of the general population of dusty star-forming galaxies. Consequently, our understanding of the nature of these sources, at the earliest epochs, is still incomplete. Here, we report the spectroscopic identification of a gravitationally amplified (μ = 9.3 ± 1.0) dusty star-forming galaxy at z = 6.027. After correcting for gravitational lensing, we derive an intrinsic less-extreme star formation rate of 380 ± 50 M⊙ yr−1 for this source and find that its gas and dust properties are similar to those measured for local ultra luminous infrared galaxies, extending the local trends to a poorly explored territory in the early Universe. The star-formation efficiency of this galaxy is similar to those measured in its local analogues, despite a ~12 Gyr difference in cosmic time

    Molecular and atomic gas in dust lane early-type galaxies - I : Low star-formation efficiencies in minor merger remnants

    Get PDF
    In this work we present IRAM-30m telescope observations of a sample of bulge-dominated galaxies with large dust lanes, which have had a recent minor merger. We find these galaxies are very gas rich, with H2 masses between 4x10^8 and 2x10^10 Msun. We use these molecular gas masses, combined with atomic gas masses from an accompanying paper, to calculate gas-to-dust and gas-to-stellar mass ratios. The gas-to-dust ratios of our sample objects vary widely (between ~50 and 750), suggesting many objects have low gas-phase metallicities, and thus that the gas has been accreted through a recent merger with a lower mass companion. We calculate the implied minor companion masses and gas fractions, finding a median predicted stellar mass ratio of ~40:1. The minor companion likely had masses between ~10^7 - 10^10 Msun. The implied merger mass ratios are consistent with the expectation for low redshift gas-rich mergers from simulations. We then go on to present evidence that (no matter which star-formation rate indicator is used) our sample objects have very low star-formation efficiencies (star-formation rate per unit gas mass), lower even than the early-type galaxies from ATLAS3D which already show a suppression. This suggests that minor mergers can actually suppress star-formation activity. We discuss mechanisms that could cause such a suppression, include dynamical effects induced by the minor merger.Peer reviewe

    Iron uptake and transport across physiological barriers

    Full text link

    U.S. Montmorency Tart Cherry Juice Decreases Bone Resorption in Women Aged 65–80 Years

    No full text
    Pre-clinical studies have demonstrated that tart cherries, rich in hydroxycinnamic acids and anthocyanins, protect against age-related and inflammation-induced bone loss. This study examined how daily consumption of Montmorency tart cherry juice (TC) alters biomarkers of bone metabolism in older women. Healthy women, aged 65–80 years (n = 27), were randomly assigned to consume ~240 mL (8 fl. oz.) of juice once (TC1X) or twice (TC2X) per day for 90 d. Dual-energy x-ray absorptiometry (DXA) scans were performed to determine bone density at baseline, and pre- and post-treatment serum biomarkers of bone formation and resorption, vitamin D, inflammation, and oxidative stress were assessed. Irrespective of osteoporosis risk, the bone resorption marker, tartrate resistant acid phosphatase type 5b, was significantly reduced with the TC2X dose compared to baseline, but not with the TC1X dose. In terms of indicators of bone formation and turnover, neither serum bone-specific alkaline phosphatase nor osteocalcin were altered. No changes in thiobarbituric acid reactive substances or high sensitivity C-reactive protein were observed in response to either TC1X or TC2X. We conclude that short-term supplementation with the higher dose of tart cherry juice decreased bone resorption from baseline without altering bone formation and turnover biomarkers in this cohort
    corecore