92 research outputs found

    Auto/cross-regulation of Hoxb3 expression in posterior hindbrain and spinal cord

    Get PDF
    The complex and dynamic pattern of Hoxb3 expression in the developing hindbrain and the associated neural crest of mouse embryos is controlled by three separate cis-regulatory elements: element I (region A), element IIIa, and the r5 enhancer (element IVa). We have examined the cis-regulatory element IIIa by transgenic and mutational analysis to determine the upstream trans-acting factors and mechanisms that are involved in controlling the expression of the mouse Hoxb3 gene in the anterior spinal cord and hindbrain up to the r5/r6 boundary, as well as the associated neural crest which migrate to the third and posterior branchial arches and to the gut. By deletion analysis, we have identified the sequence requirements within a 482-bp element III482. Two Hox binding sites are identified in element III482 and we have shown that in vitro both Hoxb3 and Hoxb4 proteins can interact with these Hox binding sites, suggesting that auto/cross-regulation is required for establishing the expression of Hoxb3 in the neural tube domain. Interestingly, we have identified a novel GCCAGGC sequence motif within element III482, which is also required to direct gene expression to a subset of the expression domains except for rhombomere 6 and the associated neural crest migrating to the third and posterior branchial arches. Element III482 can direct a higher level of reporter gene expression in r6, which led us to investigate whether kreisler is involved in regulating Hoxb3 expression in r6 through this element. However, our transgenic and mutational analysis has demonstrated that, although kreisler binding sites are present, they are not required for the establishment or maintenance of reporter gene expression in r6. Our results have provided evidence that the expression of Hoxb3 in the neural tube up to the r5/r6 boundary is auto/cross-regulated by Hox genes and expression of Hoxb3 in r6 does not require kreisler. © 2002 Elsevier Science (USA).published_or_final_versio

    The mitochondrial transcriptome of the anglerfish Lophius piscatorius

    Get PDF
    Objective Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-throughput total RNA sequencing. Results We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. piscatorius. Key features include highly abundant mitochondrial ribosomal RNAs (10–100 times that of mRNAs), and that cytochrome oxidase mRNAs appeared > 5 times more abundant than both NADH dehydrogenase and ATPase mRNAs. Unusual for a vertebrate mitochondrial mRNA, the polyadenylated COI mRNA was found to harbor a 75 nucleotide 3′ untranslated region. The mitochondrial genome expressed several non-canonical genes, including the long noncoding RNAs lncCR-H, lncCR-L and lncCOI. Whereas lncCR-H and lncCR-L mapped to opposite strands in a non-overlapping organization within the control region, lncCOI appeared novel among vertebrates. We found lncCOI to be a highly abundant mitochondrial RNA in antisense to the COI mRNA. Finally, we present the coding potential of a humanin-like peptide within the large subunit ribosomal RNA.publishedVersio

    Expression profiling of circulating non-red blood cells in embryonic blood

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to erythrocytes, embryonic blood contains other differentiated cell lineages and potential progenitor or stem cells homed to changing niches as the embryo develops. Using chicken as a model system, we have isolated an enriched pool of circulating non red blood cells (nRBCs) from E4 and E6 embryos; a transition period when definitive hematopoietic lineages are being specified in the peri-aortic region.</p> <p>Results</p> <p>Transcriptome analysis of both nRBC and RBC enriched populations was performed using chicken Affymetrix gene expression arrays. Comparison of transcript profiles of these two populations, with verification by RT-PCR, reveals in nRBCs an expression signature indicative of hematopoietic stem cells (HSCs) and progenitor cells of myeloid and lymphoid lineages, as well as a number of previously undescribed genes possibly involved in progenitor and stem cell maintenance.</p> <p>Conclusion</p> <p>This data indicates that early circulating embryonic blood contains a full array of hematopoietic progenitors and stem cells. Future studies on their heterogeneity and differentiation potentials may provide a useful alternative to ES cells and perinatal blood.</p

    Complete loss of the MHC II pathway in an anglerfish, Lophius piscatorius

    Get PDF
    Genome studies in fish provide evidence for the adaptability of the vertebrate immune system, revealing alternative immune strategies. The reported absence of the major compatibility complex (MHC) class II pathway components in certain species of pipefish (genus Syngnathus) and cod-like fishes (order Gadiformes) is of particular interest. The MHC II pathway is responsible for immunization and defence against extracellular threats through the presentation of exogenous peptides to T helper cells. Here, we demonstrate the absence of all genes encoding MHC II components (CD4, CD74 A/B, and both classical and non-classical MHC II α/β) in the genome of an anglerfish, Lophius piscatorius, indicating loss of the MHC II pathway. By contrast, it has previously been reported that another anglerfish, Antennarius striatus, retains all MHC II genes, placing the loss of MHC II in the Lophius clade to their most recent common ancestor. In the three taxa where MHC II loss has occurred, the gene loss has been restricted to four or five core MHC II components, suggesting that, in teleosts, only these genes have functions that are restricted to the MHC II pathway.publishedVersionPaid Open Acces

    Intron size minimisation in teleosts

    Get PDF
    Background: Spliceosomal introns are parts of primary transcripts that are removed by RNA splicing. Although introns apparently do not contribute to the function of the mature transcript, in vertebrates they comprise the majority of the transcribed region increasing the metabolic cost of transcription. The persistence of long introns across evolutionary time suggests functional roles that can offset this metabolic cost. The teleosts comprise one of the largest vertebrate clades. They have unusually compact and variable genome sizes and provide a suitable system for analysing intron evolution. Results: We have analysed intron lengths in 172 vertebrate genomes and show that teleost intron lengths are relatively short, highly variable and bimodally distributed. Introns that were long in teleosts were also found to be long in mammals and were more likely to be found in regulatory genes and to contain conserved sequences. Our results argue that intron length has decreased in parallel in a non-random manner throughout teleost evolution and represent a deviation from the ancestral state. Conclusion: Our observations indicate an accelerated rate of intron size evolution in the teleosts and that teleost introns can be divided into two classes by their length. Teleost intron sizes have evolved primarily as a side-effect of genome size evolution and small genomes are dominated by short introns (<256 base pairs). However, a non-random subset of introns has resisted this process across the teleosts and these are more likely have functional roles in all vertebrate clades

    Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes

    Get PDF
    World Health Organization is concerned for parental vitamin deficiency and its effect on offspring health. This study examines the effect of a marginally dietary-induced parental one carbon (1-C) micronutrient deficiency on embryonic gene expression using zebrafish. Metabolic profiling revealed a reduced 1-C cycle efficiency in F(0) generation. Parental deficiency reduced the fecundity and a total of 364 genes were differentially expressed in the F(1) embryos. The upregulated genes (53%) in the deficient group were enriched in biological processes such as immune response and blood coagulation. Several genes encoding enzymes essential for the 1-C cycle and for lipid transport (especially apolipoproteins) were aberrantly expressed. We show that a parental diet deficient in micronutrients disturbs the expression in descendant embryos of genes associated with overall health, and result in inherited aberrations in the 1-C cycle and lipid metabolism. This emphasises the importance of parental micronutrient status for the health of the offspring

    Parental micronutrient deficiency distorts liver DNA methylation and expression of lipid genes associated with a fatty-liver-like phenotype in offspring

    Get PDF
    Micronutrient status of parents can affect long term health of their progeny. Around 2 billion humans are affected by chronic micronutrient deficiency. In this study we use zebrafish as a model system to examine morphological, molecular and epigenetic changes in mature offspring of parents that experienced a one-carbon (1-C) micronutrient deficiency. Zebrafish were fed a diet sufficient, or marginally deficient in 1-C nutrients (folate, vitamin B12, vitamin B6, methionine, choline), and then mated. Offspring livers underwent histological examination, RNA sequencing and genome-wide DNA methylation analysis. Parental 1-C micronutrient deficiency resulted in increased lipid inclusion and we identified 686 differentially expressed genes in offspring liver, the majority of which were downregulated. Downregulated genes were enriched for functional categories related to sterol, steroid and lipid biosynthesis, as well as mitochondrial protein synthesis. Differential DNA methylation was found at 2869 CpG sites, enriched in promoter regions and permutation analyses confirmed the association with parental feed. Our data indicate that parental 1-C nutrient status can persist as locus specific DNA methylation marks in descendants and suggest an effect on lipid utilization and mitochondrial protein translation in F1 livers. This points toward parental micronutrients status as an important factor for offspring health and welfare.publishedVersio

    Palladium–mediated organofluorine chemistry

    Get PDF
    Producción CientíficaThe substitution of fluorine for hydrogen in a molecule may result in profound changes in its properties and behaviour. Fluorine does not introduce special steric constraints since the F atom has a small size. However, the changes in bond polarity and the possibility of forming hydrogen bonds with other hydrogen donor fragments in the same or other molecules, may change the solubility and physical properties of the fluorinated compound when compared to the non-fluorinated one. Fluorine forms strong bonds to other elements and this ensures a good chemical stability. Altogether, fluorinated compounds are very attractive in materials chemistry and in medicinal chemistry, where many biologically active molecules and pharmaceuticals do contain fluorine in their structure and this has been shown to be essential for their activityJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA302U13)Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA256U13

    Assessing Clusters and Motifs from Gene Expression Data

    Full text link
    • …
    corecore