97 research outputs found

    Temperature is a common climatic descriptor of lachryphagous activity period in Phortica variegata (Diptera: Drosophilidae) from multiple geographical locations

    Get PDF
    Background: The drosophilid Phortica variegata is known as vector of Thelazia callipaeda, the oriental eyeworm native to Asia that has become an emergent zoonotic agent in several European regions. Unlike almost all other arthropod vectors of pathogens, only P. variegata males feed of lachrymal secretions of animals, ingesting first-stage larvae (L1) of the worm living in the orbital cavities of the host, and allowing with the same behaviour the introduction of infective L3. Despite the increased detection of T. callipaeda in many European countries, information about the length of the lachryphagous activity period of P. variegata and a deep knowledge of the environmental and climatic variables involved are still limited. Methods: We herein present the results of a multicentre study involving five sites from four different countries (Italy, Spain, UK and USA) where canine thelaziosis is endemic and/or where it has already been ascertained the presence of P. variegata. Field data have been obtained on a fortnightly basis from mid-April to the end of November 2018 from a contemporary standardized sampling (same sampling effort and time of collection in all sites) of lachryphagous flies collected around the eyes of a human bait using an entomological net. These data have been associated to data collection of local climatic variables (day length, temperature, wind speed, barometric pressure and relative humidity). Results: Overall, a total of 4862 P. variegata flies (4637 males and 224 females) were collected, with high differences in densities among the different sampling sites. Significant positive correlations were found between P. variegata male density and temperature and wind speed, while negative correlations were observed for barometric pressure and relative humidity. However, the above significant differences are confirmed in each sampling site separately only for the temperature. Conclusions: This multicentre study highlights that temperature is the major common environmental driver in describing the lachryphagous activity of P. variegata in Europe and USA and, therefore, the transmission risk of thelaziosis.[Figure not available: see fulltext.

    Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella

    Get PDF
    This is the peer reviewed version of the following article: Hamm, C. A., Begun, D. J., Vo, A., Smith, C. C. R., Saelao, P., Shaver, A. O., Jaenike, J. and Turelli, M. (2014), Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol Ecol, 23: 4871–4885. doi:10.1111/mec.12901, which has been published in final form at http://doi.org/10.1111/mec.12901. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Drosophila suzukii recently invaded North America and Europe. Populations in Hawaii, California, New York and Nova Scotia are polymorphic for Wolbachia, typically with <20% infection frequency. The Wolbachia in D. suzukii, denoted wSuz, is closely related to wRi, the variant prevalent in continental populations of D. simulans. wSuz is also nearly identical to Wolbachia found in D. subpulchrella, plausibly D. suzukii's sister species. This suggests vertical Wolbachia transmission through cladogenesis (“cladogenic transmission”). The widespread occurrence of 7-20% infection frequencies indicates a stable polymorphism. wSuz is imperfectly maternally transmitted, with wild infected females producing on average 5-10% uninfected progeny. As expected from its low frequency, wSuz produces no cytoplasmic incompatibility (CI), i.e., no elevated embryo mortality when infected males mate with uninfected females, and no appreciable sex-ratio distortion. The persistence of wSuz despite imperfect maternal transmission suggests positive fitness effects. Assuming a balance between selection and imperfect transmission, we expect a fitness advantage on the order of 20%. Unexpectedly, Wolbachia-infected females produce fewer progeny than do uninfected females. We do not yet understand the maintenance of wSuz in D. suzukii. The absence of detectable CI in D. suzukii and D. subpulchrella makes it unlikely that CI-based mechanisms could be used to control this species without transinfection using novel Wolbachia. Contrary to their reputation as horizontally transmitted reproductive parasites, many Wolbachia infections are acquired through introgression or cladogenesis and many cause no appreciable reproductive manipulation. Such infections, likely to be mutualistic, may be central to understanding the pervasiveness of Wolbachia among arthropods

    Asymmetrical Reinforcement and Wolbachia Infection in Drosophila

    Get PDF
    Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to reinforcement, particularly in the uninfected species. The resulting reproductive character displacement not only increases behavioral isolation from the Wolbachia-infected species, but may also lead to behavioral isolation between populations of the uninfected species. Given the widespread occurrence of Wolbachia among insects, it thus appears that there are multiple ways by which these endosymbionts may directly and indirectly contribute to reproductive isolation and speciation

    High-Resolution Genome-Wide Dissection of the Two Rules of Speciation in Drosophila

    Get PDF
    Postzygotic reproductive isolation is characterized by two striking empirical patterns. The first is Haldane's rule—the preferential inviability or sterility of species hybrids of the heterogametic (XY) sex. The second is the so-called large X effect—substitution of one species's X chromosome for another's has a disproportionately large effect on hybrid fitness compared to similar substitution of an autosome. Although the first rule has been well-established, the second rule remains controversial. Here, we dissect the genetic causes of these two rules using a genome-wide introgression analysis of Drosophila mauritiana chromosome segments in an otherwise D. sechellia genetic background. We find that recessive hybrid incompatibilities outnumber dominant ones and that hybrid male steriles outnumber all other types of incompatibility, consistent with the dominance and faster-male theories of Haldane's rule, respectively. We also find that, although X-linked and autosomal introgressions are of similar size, most X-linked introgressions cause hybrid male sterility (60%) whereas few autosomal introgressions do (18%). Our results thus confirm the large X effect and identify its proximate cause: incompatibilities causing hybrid male sterility have a higher density on the X chromosome than on the autosomes. We evaluate several hypotheses for the evolutionary cause of this excess of X-linked hybrid male sterility

    Wolbachia-Induced Unidirectional Cytoplasmic Incompatibility and Speciation: Mainland-Island Model

    Get PDF
    Bacteria of the genus Wolbachia are among the most common endosymbionts in the world. In many insect species these bacteria induce a sperm-egg incompatibility between the gametes of infected males and uninfected females, commonly called unidirectional cytoplasmic incompatibility (CI). It is generally believed that unidirectional CI cannot promote speciation in hosts because infection differences between populations will be unstable and subsequent gene flow will eliminate genetic differences between diverging populations. In the present study we investigate this question theoretically in a mainland-island model with migration from mainland to island. Our analysis shows that (a) the infection polymorphism is stable below a critical migration rate, (b) an (initially) uninfected “island” can better maintain divergence at a selected locus (e.g. can adapt locally) in the presence of CI, and (c) unidirectional CI selects for premating isolation in (initially) uninfected island populations if they receive migration from a Wolbachia-infected mainland. Interestingly, premating isolation is most likely to evolve if levels of incompatibility are intermediate and if either the infection causes fecundity reductions or Wolbachia transmission is incomplete. This is because under these circumstances an infection pattern with an infected mainland and a mostly uninfected island can persist in the face of comparably high migration. We present analytical results for all three findings: (a) a lower estimation of the critical migration rate in the presence of local adaptation, (b) an analytical approximation for the gene flow reduction caused by unidirectional CI, and (c) a heuristic formula describing the invasion success of mutants at a mate preference locus. These findings generally suggest that Wolbachia-induced unidirectional CI can be a factor in divergence and speciation of hosts

    Complete Bacteriophage Transfer in a Bacterial Endosymbiont (Wolbachia) Determined by Targeted Genome Capture

    Get PDF
    Bacteriophage flux can cause the majority of genetic diversity in free-living bacteria. This tenet of bacterial genome evolution generally does not extend to obligate intracellular bacteria owing to their reduced contact with other microbes and a predominance of gene deletion over gene transfer. However, recent studies suggest intracellular coinfections in the same host can facilitate exchange of mobile elements between obligate intracellular bacteria—a means by which these bacteria can partially mitigate the reductive forces of the intracellular lifestyle. To test whether bacteriophages transfer as single genes or larger regions between coinfections, we sequenced the genome of the obligate intracellular Wolbachia strain wVitB from the parasitic wasp Nasonia vitripennis and compared it against the prophage sequences of the divergent wVitA coinfection. We applied, for the first time, a targeted sequence capture array to specifically trap the symbiont's DNA from a heterogeneous mixture of eukaryotic, bacterial, and viral DNA. The tiled array successfully captured the genome with 98.3% efficiency. Examination of the genome sequence revealed the largest transfer of bacteriophage and flanking genes (52.2 kb) to date between two obligate intracellular coinfections. The mobile element transfer occurred in the recent evolutionary past based on the 99.9% average nucleotide identity of the phage sequences between the two strains. In addition to discovering an evolutionary recent and large-scale horizontal phage transfer between coinfecting obligate intracellular bacteria, we demonstrate that “targeted genome capture” can enrich target DNA to alleviate the problem of isolating symbiotic microbes that are difficult to culture or purify from the conglomerate of organisms inside eukaryotes
    corecore