10 research outputs found

    Appetite regulatory hormone responses on the day following a prolonged bout of moderate-intensity exercise

    Get PDF
    Exercise increases energy expenditure however acutely this does not cause compensatory changes in appetite or food intake. This unresponsiveness contrasts the rapid counter-regulatory changes seen after food restriction. The present investigation examined whether corrective changes in appetite-regulatory parameters occur after a time delay, namely, on the day after a single bout of exercise. Nine healthy males completed two, two-day trials (exercise & control) in a random order. On the exercise trial participants completed 90 min of moderate-intensity treadmill running on day one (10:30–12:00 h). On day two appetite-regulatory hormones and subjective appetite perceptions were assessed frequently in response to two test meals provided at 08:00 and 12:00 h. Identical procedures occurred in the control trial except no exercise was performed on day one. Circulating levels of leptin were reduced on the day after exercise (AUC 5841 ± 3335 vs. 7266 ± 3949 ng− 1·mL− 1 · 7 h, P = 0.012). Conversely, no compensatory changes were seen for circulating acylated ghrelin, total PYY, insulin or appetite perceptions. Unexpectedly, levels of acylated ghrelin were reduced on the exercise trial following the second test meal on day two (AUC 279 ± 136 vs. 326 ± 136 pg− 1·mL− 1 · 3 h, P = 0.021). These findings indicate that short-term energy deficits induced by exercise initially prompt a compensatory response by chronic but not acute hormonal regulators of appetite and energy balance. Within this 24 h time-frame however there is no conscious recognition of the perturbation to energy balance

    Appetite-regulatory hormone responses on the day following a prolonged bout of moderate-intensity exercise

    Get PDF
    This article was accepted for publication in the journal Physiology and Behavior [© Elsevier] and the definitive version is available at: http://dx.doi.org/10.1016/j.physbeh.2014.12.050Exercise increases energy expenditure however acutely this does not cause compensatory changes in appetite or food intake. This unresponsiveness contrasts the rapid counter-regulatory changes seen after food restriction. The present investigation examined whether corrective changes in appetite-regulatory parameters occur after a time delay, namely, on the day after a single bout of exercise. Nine healthy males completed two, two-day trials (exercise & control) in a random order. On the exercise trial participants completed 90 min of moderate-intensity treadmill running on day one (10:30–12:00 h). On day two appetite-regulatory hormones and subjective appetite perceptions were assessed frequently in response to two test meals provided at 08:00 and 12:00 h. Identical procedures occurred in the control trial except no exercise was performed on day one. Circulating levels of leptin were reduced on the day after exercise (AUC 5841 ± 3335 vs. 7266 ± 3949 ng− 1·mL− 1 · 7 h, P = 0.012). Conversely, no compensatory changes were seen for circulating acylated ghrelin, total PYY, insulin or appetite perceptions. Unexpectedly, levels of acylated ghrelin were reduced on the exercise trial following the second test meal on day two (AUC 279 ± 136 vs. 326 ± 136 pg− 1·mL− 1 · 3 h, P = 0.021). These findings indicate that short-term energy deficits induced by exercise initially prompt a compensatory response by chronic but not acute hormonal regulators of appetite and energy balance. Within this 24 h time-frame however there is no conscious recognition of the perturbation to energy balance

    A necroptosis-independent function of RIPK3 promotes immune dysfunction and prevents control of chronic LCMV infection

    Get PDF
    Necroptosis is a lytic and inflammatory form of cell death that is highly constrained to mitigate detrimental collateral tissue damageand impaired immunity. These constraints make it difficult to define the relevance of necroptosis in diseases such as chronic andpersistent viral infections and within individual organ systems. The role of necroptotic signalling is further complicated becauseproteins essential to this pathway, such as receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like(MLKL), have been implicated in roles outside of necroptotic signalling. We sought to address this issue by individually defining therole of RIPK3 and MLKL in chronic lymphocytic choriomeningitis virus (LCMV) infection. We investigated if necroptosis contributesto the death of LCMV-specific CD8+ T cells or virally infected target cells during infection. We provide evidence showing thatnecroptosis was redundant in the pathogenesis of acute forms of LCMV (Armstrong strain) and the early stages of chronic (Docilestrain) LCMV infection in vivo. The number of immune cells, their specificity and reactivity towards viral antigens and viral loads arenot altered in the absence of either MLKL or RIPK3 during acute and during the early stages of chronic LCMV infection. However, weidentified that RIPK3 promotes immune dysfunction and prevents control of infection at later stages of chronic LCMV disease. Thiswas not phenocopied by the loss of MLKL indicating that the phenotype was driven by a necroptosis-independent function ofRIPK3. We provide evidence that RIPK3 signaling evoked a dysregulated type 1 interferone response which we linked to animpaired antiviral immune response and abrogated clearance of chronic LCMV infectio

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc

    Tubulin Tyrosine Ligase Like 12, a TTLL Family Member with SET- and TTL-Like Domains and Roles in Histone and Tubulin Modifications and Mitosis

    Get PDF
    Contains fulltext : 110068.pdf (publisher's version ) (Open Access)hTTLL12 is a member of the tubulin tyrosine ligase (TTL) family that is highly conserved in phylogeny. It has both SET-like and TTL-like domains, suggesting that it could have histone methylation and tubulin tyrosine ligase activities. Altered expression of hTTLL12 in human cells leads to specific changes in H4K20 trimethylation, and tubulin detyrosination, hTTLL12 does not catalyse histone methylation or tubulin tyrosination in vitro, as might be expected from the lack of critical amino acids in its SET-like and TTLL-like domains. hTTLL12 misexpression increases mitotic duration and chromosome numbers. These results suggest that hTTLL12 has non-catalytic functions related to tubulin and histone modification, which could be linked to its effects on mitosis and chromosome number stability

    Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    No full text
    corecore