952 research outputs found

    A systematic review and meta-analysis of the association between cyproterone acetate and intracranial meningiomas.

    Get PDF
    The influence of exposure to hormonal treatments, particularly cyproterone acetate (CPA), has been posited to contribute to the growth of meningiomas. Given the widespread use of CPA, this systematic review and meta-analysis attempted to assess real-world evidence of the association between CPA and the occurrence of intracranial meningiomas. Systematic searches of Ovid MEDLINE, Embase and Cochrane Controlled Register of Controlled Trials, were performed from database inception to 18th December 2021. Four retrospective observational studies reporting 8,132,348 patients were included in the meta-analysis. There was a total of 165,988 subjects with usage of CPA. The age of patients at meningioma diagnosis was generally above 45 years in all studies. The dosage of CPA taken by the exposed group (n = 165,988) was specified in three of the four included studies. All studies that analyzed high versus low dose CPA found a significant association between high dose CPA usage and increased risk of meningioma. When high and low dose patients were grouped together, there was no statistically significant increase in risk of meningioma associated with use of CPA (RR = 3.78 [95% CI 0.31-46.39], p = 0.190). Usage of CPA is associated with increased risk of meningioma at high doses but not when low doses are also included. Routine screening and meningioma surveillance by brain MRI offered to patients prescribed with CPA is likely a reasonable clinical consideration if given at high doses for long periods of time. Our findings highlight the need for further research on this topic

    Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels

    Get PDF
    The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. © 2013 Mowrey et al

    Significance of the Balance between Regulatory T (Treg) and T Helper 17 (Th17) Cells during Hepatitis B Virus Related Liver Fibrosis

    Get PDF
    <div><h3>Background</h3><p>Hepatitis B virus-related liver fibrosis (HBV-LF) always progresses from inflammation to fibrosis. However, the relationship between these two pathological conditions is not fully understood. Here, it is postulated that the balance between regulatory T (Treg) cells and T helper 17 (Th17) cells as an indicator of inflammation may predict fibrosis progression of HBV-LF.</p> <h3>Methodology/Principal Findings</h3><p>The frequencies and phenotypes of peripheral Treg and Th17 cells of seventy-seven HBeAg-positive chronic hepatitis B (CHB) patients who underwent liver biopsies and thirty healthy controls were determined by flow cytometry. In the periphery of CHB patients, both Treg and Th17 frequencies were significantly increased and correlated, and a lower Treg/Th17 ratio always indicated more liver injury and fibrosis progression. To investigate exact effects of Treg and Th17 cells during HBV-LF, a series of <em>in vitro</em> experiments were performed using purified CD4<sup>+</sup>, CD4<sup>+</sup>CD25<sup>+</sup>, or CD4<sup>+</sup>CD25<sup>−</sup> cells from the periphery, primary human hepatic stellate cells (HSCs) isolated from healthy liver specimens, human recombinant interleukin (IL)-17 cytokine, anti-IL-17 antibody and HBcAg. In response to HBcAg, CD4<sup>+</sup>CD25<sup>+</sup> cells significantly inhibited cell proliferation and cytokine production (especially IL-17 and IL-22) by CD4<sup>+</sup>CD25<sup>−</sup> cells in cell-contact and dose-dependent manners. In addition, CD4<sup>+</sup> cells from CHB patients, compared to those from HC subjects, dramatically promoted proliferation and activation of human HSCs. Moreover, in a dramatically dose-dependent manner, CD4<sup>+</sup>CD25<sup>+</sup> cells from CHB patients inhibited, whereas recombinant IL-17 response promoted the proliferation and activation of HSCs. Finally, <em>in vivo</em> evidence about effects of Treg/Th17 balance during liver fibrosis was obtained in concanavalin A-induced mouse fibrosis models via depletion of CD25<sup>+</sup> or IL-17<sup>+</sup> cells, and it’s observed that CD25 depletion promoted, whereas IL-17 depletion, alleviated liver injury and fibrosis progression.</p> <h3>Conclusions/Significance</h3><p>The Treg/Th17 balance might influence fibrosis progression in HBV-LF via increase of liver injury and promotion of HSCs activation.</p> </div

    Functional Modifications of Acid-Sensing Ion Channels by Ligand-Gated Chloride Channels

    Get PDF
    Together, acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that ASICs were reversibly inhibited by activation of GABAA receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABAA receptor-mediated currents. Moreover, activation of the GABAA receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABAA receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABAA receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABAA receptors, also modified ASICs in spinal neurons. We conclude that GABAA receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels

    Inequalities in health: a comparative study between ethnic Norwegians and Pakistanis in Oslo, Norway

    Get PDF
    BACKGROUND: The objective of the study was to observe the inequality in health from the perspective of socio-economic factors in relation to ethnic Pakistanis and ethnic Norwegians in Oslo, Norway. METHOD: Data was collected by using an open and structured questionnaire, as a part of the Oslo Health Study 2000–2001. Accordingly 13581 ethnic Norwegians (45% of the eligible) participated as against 339 ethnic Pakistanis (38% of the eligible). RESULTS: The ethnic Pakistanis reported a higher prevalence of poor self-rated health 54.7% as opposed to 22.1% (p < 0.001) in ethnic Norwegians, 14% vs. 2.6% (p < 0.001) in diabetes, and 22.0% vs. 9.9% (p < 0.001) in psychological distress. The socio-economic conditions were inversely related to self- rated health, diabetes and distress for the ethnic Norwegians. However, this was surprisingly not the case for the ethnic Pakistanis. Odd ratios did not interfere with the occurrence of diabetes, even after adjusting all the markers of socio-economic status in the multivariate model, while self-reported health and distress showed moderate reduction in the risk estimation. CONCLUSION: There is a large diversity of self-rated health, prevalence of diabetes and distress among the ethnic Pakistanis and Norwegians. Socio-economic status may partly explain the observed inequalities in health. Uncontrolled variables like genetics, lifestyle factors and psychosocial factors related to migration such as social support, community participation, discrimination, and integration may have contributed to the observed phenomenon. This may underline the importance of a multidisciplinary approach in future studies

    MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mesenchymal stem cell (MSC) found in bone marrow (BM-MSCs) and the Wharton's jelly matrix of human umbilical cord (WJ-MSCs) are able to transdifferentiate into neuronal lineage cells both <it>in vitro </it>and <it>in vivo </it>and therefore hold the potential to treat neural disorders such as stroke or Parkinson's disease. In bone marrow MSCs, miR-130a and miR-206 have been show to regulate the synthesis of neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. However, how neuronal differentiation is controlled in WJ-MSC remains unclear.</p> <p>Methods</p> <p>WJ-MSCs were isolated from human umbilical cords. We subjected WJ-MSCs into neurogenesis by a published protocol, and the miRNome patterns of WJ-MSCs and their neuronal progenitors (day 9 after differentiation) were analyzed by the Agilent microRNA microarray.</p> <p>Results</p> <p>Five miRNAs were enriched in WJ-MSCs, including miR-345, miR-106a, miR-17-5p, miR-20a and miR-20b. Another 11 miRNAs (miR-206, miR-34a, miR-374, miR-424, miR-100, miR-101, miR-323, miR-368, miR-137, miR-138 and miR-377) were abundantly expressed in transdifferentiated neuronal progenitors. Among these miRNAs, miR-34a and miR-206 were the only 2 miRNAs been linked to BM-MSC neurogenesis. Overexpressing miR-34a in cells suppressed the expression of 136 neuronal progenitor genes, which all possess putative miR-34a binding sites. Gene enrichment analysis according to the Gene Ontology database showed that those 136 genes were associated with cell motility, energy production (including those with oxidative phosphorylation, electron transport and ATP synthesis) and actin cytoskeleton organization, indicating that miR-34a plays a critical role in precursor cell migration. Knocking down endogenous miR-34a expression in WJ-MSCs resulted in the augment of WJ-MSC motility.</p> <p>Conclusions</p> <p>Our data suggest a critical role of miRNAs in MSC neuronal differentiation, and miR-34a contributes in neuronal precursor motility, which may be crucial for stem cells to home to the target sites they should be.</p

    Enterovirus 71 3C Protease Cleaves a Novel Target CstF-64 and Inhibits Cellular Polyadenylation

    Get PDF
    Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell–virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3Cpro) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3′ pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3Cpro. CstF-64 was cleaved in vitro by 3Cpro but neither by mutant 3Cpro (in which the catalytic site was inactivated) nor by another EV71 protease 2Apro. Serial mutagenesis was performed in CstF-64, revealing that the 3Cpro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3′-end pre-mRNA processing and polyadenylation in 3Cpro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3Cpro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA

    Measurement of the Forward-Backward Asymmetry in the B -> K(*) mu+ mu- Decay and First Observation of the Bs -> phi mu+ mu- Decay

    Get PDF
    We reconstruct the rare decays B+K+μ+μB^+ \to K^+\mu^+\mu^-, B0K(892)0μ+μB^0 \to K^{*}(892)^0\mu^+\mu^-, and Bs0ϕ(1020)μ+μB^0_s \to \phi(1020)\mu^+\mu^- in a data sample corresponding to 4.4fb14.4 {\rm fb^{-1}} collected in ppˉp\bar{p} collisions at s=1.96TeV\sqrt{s}=1.96 {\rm TeV} by the CDF II detector at the Fermilab Tevatron Collider. Using 121±16121 \pm 16 B+K+μ+μB^+ \to K^+\mu^+\mu^- and 101±12101 \pm 12 B0K0μ+μB^0 \to K^{*0}\mu^+\mu^- decays we report the branching ratios. In addition, we report the measurement of the differential branching ratio and the muon forward-backward asymmetry in the B+B^+ and B0B^0 decay modes, and the K0K^{*0} longitudinal polarization in the B0B^0 decay mode with respect to the squared dimuon mass. These are consistent with the theoretical prediction from the standard model, and most recent determinations from other experiments and of comparable accuracy. We also report the first observation of the Bs0ϕμ+μdecayandmeasureitsbranchingratioB^0_s \to \phi\mu^+\mu^- decay and measure its branching ratio {\mathcal{B}}(B^0_s \to \phi\mu^+\mu^-) = [1.44 \pm 0.33 \pm 0.46] \times 10^{-6}using using 27 \pm 6signalevents.Thisiscurrentlythemostrare signal events. This is currently the most rare B^0_s$ decay observed.Comment: 7 pages, 2 figures, 3 tables. Submitted to Phys. Rev. Let
    corecore