54 research outputs found
Exogenous spatial precuing reliably modulates object processing but not object substitution masking
Object substitution masking (OSM) is used in behavioral and imaging studies to investigate processes associated with the formation of a conscious percept. Reportedly, OSM occurs only when visual attention is diffusely spread over a search display or focused away from the target location. Indeed, the presumed role of spatial attention is central to theoretical accounts of OSM and of visual processing more generally (Di Lollo, Enns, & Rensink, Journal of Experimental Psychology: General 129:481–507, 2000). We report a series of five experiments in which valid spatial precuing is shown to enhance the ability of participants to accurately report a target but, in most cases, without affecting OSM. In only one experiment (Experiment 5) was a significant effect of precuing observed on masking. This is in contrast to the reliable effect shown across all five experiments in which precuing improved overall performance. The results are convergent with recent findings from Argyropoulos, Gellatly, and Pilling (Journal of Experimental Psychology: Human Perception and Performance 39:646–661, 2013), which show that OSM is independent of the number of distractor items in a display. Our results demonstrate that OSM can operate independently of focal attention. Previous claims of the strong interrelationship between OSM and spatial attention are likely to have arisen from ceiling or floor artifacts that restricted measurable performance
Dual Neonate Vaccine Platform against HIV-1 and M. tuberculosis
Acquired immunodeficiency syndrome and tuberculosis (TB) are two of the
world's most devastating diseases. The first vaccine the majority of
infants born in Africa receive is Mycobacterium bovis bacillus
Calmette-Guérin (BCG) as a prevention against TB. BCG protects against
disseminated disease in the first 10 years of life, but provides a variable
protection against pulmonary TB and enhancing boost delivered by recombinant
modified vaccinia virus Ankara (rMVA) expressing antigen 85A (Ag85A) of
M. tuberculosis is currently in phase IIb evaluation in
African neonates. If the newborn's mother is positive for human
immunodeficiency virus type 1 (HIV-1), the baby is at high risk of acquiring
HIV-1 through breastfeeding. We suggested that a vaccination consisting of
recombinant BCG expressing HIV-1 immunogen administered at birth followed by a
boost with rMVA sharing the same immunogen could serve as a strategy for
prevention of mother-to-child transmission of HIV-1 and rMVA expressing an
African HIV-1-derived immunogen HIVA is currently in phase I trials in African
neonates. Here, we aim to develop a dual neonate vaccine platform against HIV-1
and TB consisting of BCG.HIVA administered at birth followed by a boost with
MVA.HIVA.85A. Thus, mMVA.HIVA.85A and sMVA.HIVA.85A vaccines were constructed,
in which the transgene transcription is driven by either modified H5 or short
synthetic promoters, respectively, and tested for immunogenicity alone and in
combination with BCG.HIVA222. mMVA.HIVA.85A was produced markerless
and thus suitable for clinical manufacture. While sMVA.HIVA.85A expressed higher
levels of the immunogens, it was less immunogenic than mMVA.HIVA.85A in BALB/c
mice. A BCG.HIVA222–mMVA.HIVA.85A prime-boost regimen induced
robust T cell responses to both HIV-1 and M. tuberculosis.
Therefore, proof-of-principle for a dual anti-HIV-1/M.
tuberculosis infant vaccine platform is established. Induction of
immune responses against these pathogens soon after birth is highly desirable
and may provide a basis for lifetime protection maintained by boosts later in
life
Activation in a Frontoparietal Cortical Network Underlies Individual Differences in the Performance of an Embedded Figures Task
The Embedded Figures Test (EFT) requires observers to search for a simple geometric shape hidden inside a more complex figure. Surprisingly, performance in the EFT is negatively correlated with susceptibility to illusions of spatial orientation, such as the Roelofs effect. Using fMRI, we previously demonstrated that regions in parietal cortex are involved in the contextual processing associated with the Roelofs task. In the present study, we found that similar parietal regions (superior parietal cortex and precuneus) were more active during the EFT than during a simple matching task. Importantly, these parietal activations overlapped with regions found to be involved during contextual processing in the Roelofs illusion. Additional parietal and frontal areas, in the right hemisphere, showed strong correlations between brain activity and behavioral performance during the search task. We propose that the posterior parietal regions are necessary for processing contextual information across many different, but related visuospatial tasks, with additional parietal and frontal regions serving to coordinate this processing in participants proficient in the task
Action Without Awareness: Reaching to an Object You Do Not Remember Seeing
BACKGROUND: Previous work by our group has shown that the scaling of reach trajectories to target size is independent of obligatory awareness of that target property and that "action without awareness" can persist for up to 2000 ms of visual delay. In the present investigation we sought to determine if the ability to scale reaching trajectories to target size following a delay is related to the pre-computing of movement parameters during initial stimulus presentation or the maintenance of a sensory (i.e., visual) representation for on-demand response parameterization. METHODOLOGY/PRINCIPAL FINDINGS: Participants completed immediate or delayed (i.e., 2000 ms) perceptual reports and reaching responses to different sized targets under non-masked and masked target conditions. For the reaching task, the limb associated with a trial (i.e., left or right) was not specified until the time of response cuing: a manipulation that prevented participants from pre-computing the effector-related parameters of their response. In terms of the immediate and delayed perceptual tasks, target size was accurately reported during non-masked trials; however, for masked trials only a chance level of accuracy was observed. For the immediate and delayed reaching tasks, movement time as well as other temporal kinematic measures (e.g., times to peak acceleration, velocity and deceleration) increased in relation to decreasing target size across non-masked and masked trials. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that speed-accuracy relations were observed regardless of whether participants were aware (i.e., non-masked trials) or unaware (i.e., masked trials) of target size. Moreover, the equivalent scaling of immediate and delayed reaches during masked trials indicates that a persistent sensory-based representation supports the unconscious and metrical scaling of memory-guided reaching
The reference frame for encoding and retention of motion depends on stimulus set size
YesThe goal of this study was to investigate the reference
frames used in perceptual encoding and storage of visual
motion information. In our experiments, observers viewed
multiple moving objects and reported the direction of motion
of a randomly selected item. Using a vector-decomposition
technique, we computed performance during smooth pursuit
with respect to a spatiotopic (nonretinotopic) and to a
retinotopic component and compared them with performance
during fixation, which served as the baseline. For the stimulus
encoding stage, which precedes memory, we found that the
reference frame depends on the stimulus set size. For a single
moving target, the spatiotopic reference frame had the most
significant contribution with some additional contribution
from the retinotopic reference frame. When the number of
items increased (Set Sizes 3 to 7), the spatiotopic reference
frame was able to account for the performance. Finally, when
the number of items became larger than 7, the distinction
between reference frames vanished. We interpret this finding
as a switch to a more abstract nonmetric encoding of motion
direction. We found that the retinotopic reference frame was
not used in memory. Taken together with other studies, our
results suggest that, whereas a retinotopic reference frame
may be employed for controlling eye movements, perception
and memory use primarily nonretinotopic reference frames.
Furthermore, the use of nonretinotopic reference frames appears
to be capacity limited. In the case of complex stimuli, the
visual system may use perceptual grouping in order to simplify
the complexity of stimuli or resort to a nonmetric abstract
coding of motion information
Masking of Figure-Ground Texture and Single Targets by Surround Inhibition: A Computational Spiking Model
A visual stimulus can be made invisible, i.e. masked, by the presentation of a second stimulus. In the sensory cortex, neural responses to a masked stimulus are suppressed, yet how this suppression comes about is still debated. Inhibitory models explain masking by asserting that the mask exerts an inhibitory influence on the responses of a neuron evoked by the target. However, other models argue that the masking interferes with recurrent or reentrant processing. Using computer modeling, we show that surround inhibition evoked by ON and OFF responses to the mask suppresses the responses to a briefly presented stimulus in forward and backward masking paradigms. Our model results resemble several previously described psychophysical and neurophysiological findings in perceptual masking experiments and are in line with earlier theoretical descriptions of masking. We suggest that precise spatiotemporal influence of surround inhibition is relevant for visual detection
Search for Standard Model Higgs Boson Production in Association with a W Boson using a Neural Network
Submitted to Phys. Rev. DWe present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp̅ →W±H→ℓνbb̅ ) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 fb-1. We select events consistent with a signature of a single charged lepton (e±/μ±), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150 GeV/c2, respectively.Peer reviewe
Observation of exclusive charmonium production and gamma+gamma to mu+mu- in p+pbar collisions at sqrt{s} = 1.96 TeV
7 pages, 3 figures, 1 table. Version accepted for Phys.Rev.Lett. Phys.Rev.Lett. (to be published)We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|In CDF we have observed the reactions p+p̅ →p+X+p̅ , with X being a centrally produced J/ψ, ψ(2S), or χc0, and γγ→μ+μ- in pp̅ collisions at √s=1.96 TeV. The event signature requires two oppositely charged central muons, and either no other particles or one additional photon detected. Exclusive vector meson production is as expected for elastic photoproduction, γ+p→J/ψ(ψ(2S))+p, observed here for the first time in hadron-hadron collisions. We also observe exclusive χc0→J/ψ+γ. The cross sections dσ/dy|y=0 for J/ψ, ψ(2S), and χc0 are 3.92±0.25(stat)±0.52(syst) nb, 0.53±0.09(stat)±0.10(syst) nb, and 76±10(stat)±10(syst) nb, respectively, and the continuum is consistent with QED. We put an upper limit on the cross section for Odderon exchange in exclusive J/ψ production.Peer reviewe
- …