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ABSTRACT 

The goal of this study was to investigate the reference frames used in perceptual encoding and 

storage of visual motion information. In our experiments, observers viewed multiple moving objects 

and reported the direction of motion of a randomly selected item. Using a vector-decomposition 

technique, we computed performance during smooth pursuit with respect to a spatiotopic (non-

retinotopic) and to a retinotopic component and compared them with performance during fixation, 

which served as the baseline. For the stimulus encoding stage, which precedes memory, we found 

that the reference frame depends on the stimulus set-size. For a single moving target, the spatiotopic 

reference-frame had the most significant contribution with some additional contribution from the 

retinotopic reference-frame. When the number of items increased (set sizes 3 to 7), the spatiotopic 

reference-frame was able to account for the performance. Finally, when the number of items became 

larger than 7, the distinction between reference frames vanished.  We interpret this finding as a 

switch to a more abstract non-metric encoding of motion direction. We found that the retinotopic 

reference frame was not used in memory. Taken together with other studies, our results suggest that, 

whereas a retinotopic reference frame may be employed for controlling eye-movements, perception 

and memory use primarily non-retinotopic reference-frames. Furthermore, the use of non-retinotopic 

reference frames appears to be capacity limited. In the case of complex stimuli, the visual system 

may use perceptual grouping in order to simplify the complexity of stimuli or resort to a non-metric 

abstract coding of motion information. 

 

Key Words: Motion perception, reference frame, sensory memory, iconic memory, short-term 

memory.  
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INTRODUCTION 

 

The optics of the eyes map the three-dimensional visual scene into two-dimensional retinal 

images. The projections from retina to sub-cortical and to early visual cortical areas preserve the 

neighborhood relationships in these images, creating what is known as retinotopic representations 

(Engel, 1994; Gardner et al., 2008; Sereno et al., 2001; Tootell et al., 1995, 1998). Retinotopic 

representations are informative about the position of stimuli in the scene with respect to the eyes and 

hence can play a role in the control of eye movements (McKenzie & Lisberger, 1986). For example, 

to make a saccade to a selected stimulus, sensorimotor systems can compute the “error signal”, i.e., 

the distance of the target with respect to fovea, within retinotopic representations and use the error 

signal to program the movements of the eyes (McKenzie & Lisberger, 1986; Orban de Xivry & 

Lefèvre, 2007).  There is also evidence that spatiotopic representations, i.e., representations based on 

reference frames that are located in space, contribute to the control of eye-movements (Mays & 

Sparks, 1980; Pertzov, Avidan, & Zohary, 2011). On the other hand, retinotopic representations are 

not well suited to explain our perceptual experience under normal viewing conditions due to the 

movements of the observer (eye, head, body movements, which we call “ego-motion”) and those of 

the objects in the environment (which we call “exo-motion”).  

Natural human vision is based on a sequence of saccadic or smooth gaze changes that direct the 

fovea to and maintain it on stimuli of interest (Buswell, 1935; Yarbus, 1967; Zelinsky & Todor, 

2010). These ego-motions cause drastic shifts of stimuli in retinotopic representations. Despite this 

instability in retinotopic representations, our perceptual experience of the visual world appears to be 

highly stable. It stands to reason that other coordinate systems, that we will call collectively as non-

retinotopic representations, are necessarily involved for the visual system to achieve a sense of 

spatiotemporal coherence (Bridgeman et al., 1994; Melcher & Colby, 2008; Wurtz, 2008; Cavanagh 

et al., 2010; Burr & Morrone, 2011, 2012; Melcher & Morrone, 2015). It has been suggested that 

efference-copy signals associated with ego-motion commands play an important role in transforming 

retinotopic representations into non-retinotopic representations (Von Helmholtz, 1925; Von Holst, 

1954; Mack, 1986; Andersen et al., 1993; Bridgeman, 1995). In addition to stabilizing our percepts, 

the inclusion of efference-copy signals to build up non-retinotopic representations may also improve 

abilities such as localization of speed differences in complex stimuli. For example, Braun et al. 

(2010) measured thresholds for detecting the spatial location of stimuli that undergo speed changes 
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during fixation and smooth pursuit. They showed that the ability to spatially localize speed changes 

was better during pursuit compared to fixation, which they attributed to the use of efference-copy 

signals (Braun et al., 2010).   

Another problem for retinotopic representations stems from the movements of objects in the 

environment (Burr, 1980; Chen et. al., 1995; Nishida, 2004; Öğmen, 2007; Öğmen & Herzog, 2010). 

When objects in the environment move (exo-motion), they activate retinotopically anchored 

mechanisms only briefly and hence the resulting percepts are predicted to be blurred with “ghost-

like” appearances (Öğmen, 2007; Öğmen & Herzog, 2010). However, our percepts of moving 

objects are in general sharp and clear. In the case of exo-motion, it has been suggested that the 

motion of objects are used to build reference frames to transform retinotopic representations into 

non-retinotopic representations (Duncker, 1938; Wade & Swanton, 1987, 1996; Bremner et al., 

2005; Noory, Herzog, & Öğmen, Herzog, 2015). 

In addition to the question of which reference frames are used to explain our motor behavior and 

our real-time perceptual experience, it is also important to understand the reference frames used in 

memory systems. According to the modal model of human memory (Atkinson & Shiffrin, 1968; 

Baddeley & Hitch, 1974), the visual stimulus-encoding stage is followed by three memory systems: 

Visual-Sensory memory (VSM), Visual-Short-Term Memory (VSTM), and Long-Term Memory 

(LTM).  

Whereas much of the research on VSM indicates that it is encoded in retinotopic coordinates 

(e.g. Haber, 1983; Jonides et al., 1983; Rayner & Pollatsek, 1983; Irwin et al., 1983, 1988; Sun & 

Irwin, 1987), more recent findings using sequential metacontrast and Ternus-Pikler displays indicate 

that sensory memory can also employ motion-based non-retinotopic reference frames (Öğmen, 2007; 

Öğmen & Herzog, 2010; Noory, Herzog, & Öğmen, 2015).  

Studies on the reference frames underlying VSTM have been equivocal. In a study by Baker et 

al. (2003), monkeys were trained to hold in memory either the retinotopic or spatiotopic location of a 

stimulus, and then, after a slow gaze shift (smooth pursuit eye movement), make a saccade towards 

the remembered location. They found that saccades to spatiotopic locations are more variable than 

saccades to retinotopic locations, and suggested a retinotopically organized model of VSTM for 

spatial information. Retinotopic processing in VSTM was also suggested by Golomb and Kanwisher 

(2012) based on the finding that, after making a visually guided saccade during a memory-delay 

interval, observers were significantly more accurate and precise at reporting retinotopic locations 
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than spatiotopic locations. Results from study by Ong et al. (2009), on the contrary, favor the 

spatiotopic model of VSTM. In a delayed-saccade paradigm, observers were asked to compare 

directions of motion of a pre-saccadic and a post-saccadic stimulus. Performance was found optimal 

when the two stimuli appear at the same spatiotopic, rather than retinotopic, location. 

Given the important role that motion information carries in visual processing and given that 

motion itself can constitute a reference frame, the goal of our study was to investigate the reference 

frames used in the encoding and the retention of motion information in VSM and VSTM. In 

principle, to distinguish retinotopic and non-retinotopic components of visual processing, one has to 

manipulate movements of the observer (e.g., the eyes) and of the objects, because the two systems 

are not separable under static viewing. Most of the previous work investigating reference frames for 

visual memory reviewed earlier was based on procedures that involved saccadic eye movements. 

The use of only vertical and/or horizontal saccadic displacements of the eyes and highly predictable 

locations of objects might limit the generality of those findings. In addition, although visual stimuli 

were defined on the basis of attributes such as orientation or motion, their spatial location was the 

only factor used to contrast retinotopic and non-retinotopic conditions. In the present study, with eye 

displacements incorporated in the form of smooth-pursuit eye movements (SPEMs), we dissociated 

the two reference frames by applying motion-vector decomposition (see Data Analysis Section). 

Directions of eye and object movements were both randomized in our experiments. We sought to 

investigate the coordinates in which the visual system encodes and stores in memory the directions 

of motion of multiple moving stimuli.  

Previous studies addressing reference frames for motion stimuli mostly focused on processing at 

the perceptual encoding level. The perceived direction of motion during pursuit has been reported to 

have retinotopic (Becklen et al., 1984; Festinger et al., 1976; Mateeff, 1980; Wallach et al., 1985) 

and incompletely converted spatiotopic coordinates (Souman et al., 2005a; Souman et al., 2005b; 

Souman et al., 2006a; Souman et al., 2006b; Swanston & Wade, 1988). In terms of attentively 

tracking the identities of multiple moving-objects, it has been suggested that both retinotopic and 

spatiotopic coordinate systems are used (Howe, Pinto, Horowitz, 2010). A more recent study showed 

that the effective reference frame for motion consists of an integration of motion-based, retinotopic 

and spatiotopic reference frames (Agaoglu et al., 2015a, 2015b). However, very few studies have 

investigated reference frames underlying memory for motion. Melcher and Fracasso (2012) 

investigated the trans-saccadic line-motion illusion (TLMI) by introducing a saccade between the 
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presentation of the inducer and the line. They also presented two inducers on each trial such that any 

illusion operating in a retinotopic reference frame would be in opposition to any illusion in a 

spatiotopic reference frame. The study found that the direction of the TLMI perceived was largely 

consistent with a spatiotopic reference frame. In a separate experiment the authors varied the number 

of inducers in the TLMI stimulus and found that observers had a capacity of approximately two 

inducers, well below the capacity of about seven that they found in a comparable trans-saccadic 

visual working memory experiment for color. They suggested the trans-saccadic capacity was 

limited by the number of object files or attentional pointers that could be updated across saccades. It 

is not clear how this TLMI study would generalize to other motion tasks, because in TLMI the 

inducers used in the memory task were stationary, as was the line, and the percept in line motion 

illusion differs from that in apparent motion, though there is some overlap of the neural mechanisms 

involved in the two tasks (e.g. Jancke, Chavane, Naaman & Grinwald, 2004). 

In this study, using a partial-report technique, in which the cue was delivered immediately, or 

else with varying delays, after stimulus offset, we examined perception of motion in the different 

processing stages, from encoding to sensory memory and VSTM. We determined reference systems 

for each stage of motion processing in two conditions, with and without eye movements. With eye 

movements (SPEM condition), non-retinotopic and retinotopic coordinates are dissociable. In 

general, if motion is processed primarily in one coordinate system, performance measured in that 

system during SPEM should be better than that measured in the other system. Also, the former 

should be comparable to the performance level in the absence of eye movements (fixation condition, 

in which case, non-retinotopic performance is the same as retinotopic performance).  

Previous studies have varied set-size in order to get estimates of capacity of the visual system for 

processing multiple motions in a variety of tasks involving: tracking of object identities (Pylyshyn & 

Storm, 1988); monitoring changes in direction of motion (Tripathy & Barrett, 2004; Tripathy, 

Narasimhan & Barrett, 2007; Narasimhan, Tripathy & Barrett, 2009); monitoring directions of 

motion (Horowitz & Cohen, 2010; Shooner, Tripathy, Bedell & Öğmen, 2010); encoding and 

memory of directions of motion (Öğmen, Ekiz, Huynh, Tripathy & Bedell, 2013); and feature-

binding (Huynh, Tripathy, Bedell & Öğmen, 2015). An open question is whether a single reference 

frame is used for processing motion across all set-sizes. Several recent studies point to the existence 

of multiple complementary mechanisms for processing multiple objects, in particular, low-capacity 

systems that can process 3-4 items individually, and high-capacity systems for encoding and storing 
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summary statistics of sets/groups/ensembles of objects larger than the aforementioned 3-4 items 

(Cant, Sun & Xu, 2015). The summary statistics that are extracted during ensemble coding include 

means or averages (reviewed in Bauer, 2015) and variances (Norman, Heywood & Kentridge, 2015). 

Ensemble coding has been demonstrated for a variety of features including low-level ones such as 

mean size (Ariely, 2001; Corbett & Melcher, 2014), variance in orientation (Norman, Heywood & 

Kentridge, 2015), and high-level features such as averages of emotions, gender and identities of 

faces, and behaviors of crowds (Haberman & Whitney, 2007; de Fockert & Wolfenstein, 2009; 

Sweeny, et al., 2012). It is likely that different mechanisms are involved in the extraction of 

summary statistics of different features (Hubert-Wallander & Boynton, 2015), making 

generalizations difficult. Studies of ensemble encoding usually require observers to report some 

average statistic of some stimulus feature, rather than some feature pertaining to one particular 

object as in our partial report experiments. However, some contribution of ensemble encoding to the 

measured capacity cannot be ruled out (Brady & Alvarez, 2015). We varied set-size between 1 and 

12 in order to estimate the capacity of the motion system for representing direction of motion at the 

encoding and memory stages. The range of set-sizes permits us to investigate if different 

mechanisms operate at small and large set-sizes, using potentially different reference frames. 

Statistical modeling further allowed us to determine whether a purely non-retinotopic, 

retinotopic, or a combined model best describes the behavioral data, as well as to probe the 

quantitative and qualitative details of observers’ performance.  

 

 

METHODS 

 

We ran a set of four experiments in which observers tracked multiple moving objects while: (1) 

maintaining their gaze on a fixation point (Experiments 1a-1b); or (2) performing a Smooth Pursuit 

Eye Movement - SPEM (Experiments 2a-2b). The task of the observers was to report the perceived 

direction of motion of a randomly chosen object by rotating an on-screen pointer. Experiments 1a 

and 2a, in which the target to be reported was cued immediately after objects stopped moving and 

disappeared, aimed to characterize the initial encoding stage. While observers had to hold in memory 

information about this cued target during the reporting phase, having a single target item and no 

delay after stimulus offset minimized the involvement of memorization in their performance. 
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Experiments 1b and 2b included varying cue delays, aimed to tap into sensory memory and VSTM. 

For each eye movement condition, we provided observers with several initial training blocks (28 

trials each) to ensure that each of them could perform all tasks well. In general, a reasonable 

proportion of valid trials (> 70%) was obtained after 2 or 3 such blocks. Criteria for the validity of a 

trial in the fixation and SPEM conditions are described below under the procedure of experiments 1a 

and 2a, respectively. These criteria were applied for only the dominant eye of each observer, which 

was determined in advance using the ABC test for sighting dominance (Miles, 1929, 1930). We used 

the dominant eye because subjects fixate significantly more accurately with the dominant eye  

compared to the non-dominant eye during eye-position calibration (Nyström et al., 2013; Vikesdal & 

Langaag, 2016) and track more faithfully target motion with the dominant eye (Gibaldi et al., 

2016). One participant had a left dominant eye (TTN), the remaining three had right dominant eyes 

(TAN, QVP, DHL). Eye positions for both eyes were recorded, but only the dominant eye’s data 

were used in analyses. In addition, a short training block (7 or 14 trials) was also run when observers 

came back after a break to foster stability of performance.  

Participants: The first author and 3 naïve observers with normal, or corrected to normal visual 

acuity, and with no color deficiency (according to self-reports and the online version of the Ishihara 

test) participated in all experiments. Naïve observers were not informed about the hypotheses of the 

study. Experiments were conducted according to a protocol adhering to the Declaration of Helsinki 

and approved by the University of Houston Committee for the Protection of Human Subjects.  

Apparatus: A Visual Stimulus Generator system (Cambridge Research Systems) with a VSG2/5 

video card housed in a personal computer and a SONY GDM-FW900 color monitor (20 inches, 100 

Hz) were used to create and display stimuli; programming was implemented in C++. The screen 

resolution was 800x500 pixels of which 604x405 pixels (19.7x13.2 deg; 1.96 arcmin/pixel) were 

used for object display. The screen edges were visible during the experiments, but the border of the 

display area was not. Observers used a computer mouse to give their response, and their heads were 

kept still on a head/chin rest at a distance of 1 meter in front of the monitor. Gaze position and 

velocity were recorded using a head-mounted binocular eye tracking system (SR Research – Eyelink 

II) sampling at 250 Hz.  

Stimuli: A black cross subtending 1.5x1.5 deg was used to guide eye fixation or pursuit movements. 

Objects were circular disks of different readily distinguishable colors that were randomly selected 

from a set of 180 equi-luminant colors. These 180 colors were sampled along a circle (i.e., resolution 
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2°/color) in the CIE L*a*b color system. The circle is located at L = 15 cd/m2, centered at the white 

point (with a = 0.2044 and b = 0.4808), and its radius was chosen to maximize the discriminability 

of the colors (approximately 2°). Color separation of any two objects was not smaller than 17° (see 

Huynh et al., 2015 for a justification of this separation). Although color was task-irrelevant in the 

present experiments, we used colored instead of uniform gray objects, as in the Huynh et al. study, 

for comparison purposes. The diameter of each object was chosen to subtend a visual angle of 1 deg. 

Objects were presented on a gray 40-cd/m
2
 background.  

Experiment 1a: Reference Frames for Stimulus Encoding during Fixation  

Procedure: A trial began with a fixation-cross presented at the center of the screen. Observers were 

instructed to start fixating the cross when ready and promptly click the mouse. Upon detecting this 

mouse click, the program sent a trigger code to the eye tracker. An on-line drift correction was 

performed and eye movement recordings started at this point. Observers continued to hold fixation 

on the cross. At 1300 ms after the mouse click
1
, a stimulus containing multiple moving disks was 

displayed for 200 ms while the fixation cross remained stationary. The disks moved along linear 

trajectories in random directions at a speed of 5 deg/s. To minimize interference between the objects, 

the disk trajectories were constrained never to cross one another and no two objects had motion 

directions closer than 17 deg. After 200 ms of presentation, the stimuli were removed from the 

display. One of the disks was randomly chosen to be the probed item, the position of which was cued 

by a small black dot, and observers were asked to report the disk’s motion direction by rotating an 

on-screen pointer, which was a black bar extending from the dot, to the perceived direction (Figure 

1). Although the fixation cross remained visible until response, eye tracking ended and fixation was 

no longer strictly required after the offset of the stimuli. 

 

-----  insert Figure 1 here  ----- 

 

Note that the present experiments were different than our previous experiments in Huynh et al. 

(2015) in that: (1) No static preview of objects (1 s) was shown before the motion period as we 

wanted the objects to only appear during the steady phase of smooth pursuit; and (2) No feedback 

was provided after responses in either the training or experimental runs. Because gaze position was 

                                                           
1
 The choice of this duration was to make it consistent with the SPEM condition to be described later. 
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controlled in the present experiments, observers might learn from feedback and adjust their 

responses to avoid errors that they realized they made repeatedly when the target moved across their 

gaze point at certain distances or directions. 

As mentioned earlier, gaze position was monitored by the eye tracker. During each trial, 

observers were asked to maintain their gaze on the fixation point at the center of the screen until the 

disk stimuli disappeared. To be considered as a good fixation, observers' gaze had to remain within a 

circular area with 1-deg radius around the central point of the cross, with no saccades or blinks. If 

any of these requirements were not met, the trial was rejected and observers received text feedback 

on the display telling the reason for rejection. The rejected trial was repeated later during the same 

set of trials. 

Design: Seven set sizes (one, three, four, six, eight, nine, or twelve) of moving objects were tested. 

The experiment was divided into 25 separate blocks with trials of all set sizes randomly interleaved 

within each block. A block ended whenever observers finished 28 valid trials (4 trials per condition 

of set size). That is, each observer ran 4*25 = 100 trials per set size, or 700 trials in total. The eye 

tracker was recalibrated at the start of each block using a 9-point grid. Calibration validation was 

checked twice, after the calibration and when the observer completed a block. If any of the fixated 

positions during validation disagreed from the original calibration by more than 1.5 deg at the 

conclusion of any block, the entire block was excluded and re-run later.  

Experiment 1b: Reference Frames for Sensory Memory and VSTM during Fixation  

Experiment 1b was the same as experiment 1a except for the following changes: 

- The number of objects was fixed at 6 in every block. 

- The cue was not always given immediately after the objects disappeared but was preceded by 

a variable-duration delay. Seven different delay values (0, 50, 100, 250, 500, 1000, or 3000 

ms) were randomly chosen on each trial. 

As in Experiment 1a, observers finished a block after obtaining 28 valid trials (4 trials per 

condition of cue delay). A total of 25 blocks yielded 4*25=100 trials per condition of cue delay, or 

700 trials in total. Observers followed the same steps as in Experiment 1a. Invalid trials and blocks 

were discarded and re-run. 

Experiment 2a: Reference Frames for Stimulus Encoding during SPEM 
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Procedure: We applied the step-ramp paradigm devised by Rashbass (1961) to obtain a relatively 

fast and smooth initiation of pursuit eye movement (Figure 2). A cross of the same design as in the 

fixation condition served as the pursuit target. Observers were required to fixate initially and then 

smoothly follow this target as it moved. At the beginning of each trial, the cross was presented at a 

randomly selected location on an invisible circle that was centered at the center of the screen and had 

a radius of 3 deg (in terms of visual angle). Observers were instructed to start fixating the cross when 

ready and promptly click the mouse. A command was then sent by the program to request the eye 

tracker to perform drift correction and start recording eye data. The cross remained stationary for 

500 ms after the mouse click, then suddenly jumped in the centrifugal direction to another location 

which was at 4 deg away from the center of the screen (step size = 1 deg), and immediately started 

moving in the opposite direction toward the center at a constant speed (5 deg/s). The target reached 

the center of the display at 800 ms after the step and continued to move in the same direction for an 

additional 200 ms. The stimuli containing multiple moving disks were displayed during this 200 ms 

period (Figure 3). Similar to the fixation condition, the disks moved along linear trajectories in 

random directions at the speed of 5 deg/s, the same as that of the pursuit target. When the pursuit 

target stopped moving at 1 deg from the center point, the stimuli were removed from the display. A 

randomly chosen disk was marked immediately with a small black dot to indicate the target for 

response. The task of reporting the target’s direction of motion was the same as in Experiments 1a 

and 1b. 

 

-----  insert Figure 2 here  ----- 

 

Criteria for a valid smooth-pursuit trial 

To guarantee that observers successfully performed smooth-pursuit eye movements while 

tracking the moving disks, a number of requirements had to be met. First, during the initial fixation 

phase, observers had to maintain their gaze within an invisible circle (1.5 deg radius) around the 

center of the cross. Second, given the pursuit latency on the order of 120 ms, pursuit onset had to be 

detected in the interval 120 – 600 ms after the step (Figure 2). Eye velocity (𝑣𝑒⃗⃗  ⃗) had to exceed 25% 

of target velocity (𝑣𝑡⃗⃗  ⃗) to be considered as pursuit onset. Third, we considered pursuit quality during 

the last 300 ms of pursuit, including the 200 ms of stimulus presentation and the previous 100 ms 

(Figure 2). An EyeLink II built-in function was employed to calculate average eye velocity. This 
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function allowed for the selection of the width of a moving window containing a certain group of 

most recent gaze-position samples that would be considered to estimate the velocity of the middle 

sample in the group, hence minimizing noise. In our pursuit experiments, we used the 

FIVE_SAMPLE_MODEL (width = 5 samples); with 4 ms/sample (EyeLink sample rate = 250 Hz). 

Therefore, 5 samples corresponded to 20 ms. By calling the function after each new sample, we 

obtained a running record of velocity for all samples during the last 300 ms of pursuit. Mean eye 

velocity over this interval was then computed separately for the horizontal (|𝑣𝑒𝑥⃗⃗⃗⃗⃗⃗ |) and vertical (|𝑣𝑒𝑦⃗⃗⃗⃗⃗⃗ |) 

components. To qualify as a smooth pursuit, pursuit gain (𝑃𝐺 = |𝑣𝑒⃗⃗  ⃗|/|𝑣𝑡⃗⃗  ⃗|) and that for either of the 

two components (𝑃𝐺𝑥 = |𝑣𝑒𝑥⃗⃗⃗⃗⃗⃗ |/|𝑣𝑡𝑥⃗⃗ ⃗⃗  ⃗| or 𝑃𝐺𝑦 = |𝑣𝑒𝑦⃗⃗⃗⃗⃗⃗ |/|𝑣𝑡𝑦⃗⃗⃗⃗⃗⃗ |) had to fall in the range [0.7, 1.3]. We 

did not put this constraint on both 𝑃𝐺𝑥 and 𝑃𝐺𝑦 due to the fact that, when the direction of 𝑣𝑡⃗⃗  ⃗ was 

close to vertical or horizontal (rather small values of |𝑣𝑡𝑥⃗⃗ ⃗⃗  ⃗| or |𝑣𝑡𝑦⃗⃗⃗⃗⃗⃗ |), it was virtually impossible to 

have the smaller component (𝑃𝐺𝑥 or 𝑃𝐺𝑦) fall in the specified range. Finally, also during the last 

300 ms of pursuit, no saccades (saccade displacement threshold = 0.5 deg; saccade velocity 

threshold = 30 deg/s) or blinks were accepted. If any of the four constraints were violated, the trial 

was discarded and re-run during the same set of trials.  

 

-----  insert Figure 3 here  ----- 

 

Design: Except for the difference in eye movement (smooth pursuit instead of fixation) and the 

corresponding criteria considered, the design of this experiment was the same as in Experiment 1a, 

with 7 set sizes and 100 valid trials per condition of set size. Observers also received text feedback 

about eye movement after each rejected trial, which was rerun in the same block of trials. Similar to 

experiments 1a and 1b, if post-block position calibrations disagreed with initial calibration values by 

more than 1.5 deg, the entire block was excluded and re-run later. 

Experiment 2b: Reference Frames for Sensory Memory and VSTM during SPEM 

Experiment 2b was the same as experiment 2a except for the following changes: 

- The number of objects was fixed at 6 in every block. 

- The cue was not given always immediately after the objects disappeared but was preceded by 

a variable-duration delay. Similar to Experiment 1b, seven different delay values (0, 50, 100, 

250, 500, 1000, or 3000 ms) were randomly chosen on each trial. 
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Again, observers ran 25 blocks to obtain 100 valid trials per condition of cue delay. 

 

 

DATA ANALYSIS  

Our goal was to use statistical models to break the observers’ aggregate performance down into 

multiple components that characterize important aspects of their behaviors. This includes 

consideration of the extent to which correct target reporting, guessing and non-target misreporting 

account for variability of response errors, and the nature of the reference frames associated with 

these errors. We wished to obtain both qualitative and quantitative measures for each of these 

components. We analyzed and compared several plausible models that are different from one 

another in their assumptions about an observer’s behavioral pattern. Our interpretations of the data 

were then based on the best performing model.  

We used two different methods of fitting the models to empirical data (Huynh et al., 2015): (1) 

The method of Least Squares fitting involves the creation of a nonlinear optimization routine using 

the Matlab fminsearch(.) function to find the values of the parameters that minimize an error 

function; (2) The Expectation-Maximization (E-M) algorithm (Dempster et al., 1977), which 

employs Bayes’ theorem for finding maximum likelihood estimates of the parameters. We found the 

best performing model by comparing adjusted 𝑅2 (first method) and Akaike/Bayesian Information 

Criterion (second method) values obtained for each model and observed similar results. We report 

only the results of the first method in the main text. Mathematical derivation and results of the 

second method are provided in Supplemental Information. 

The first four of our hypothetical models (models F1, F2, F3c, F3r) are the same as in our 

previous study (Huynh et al., 2015). These models take into account noise and uncertainties in an 

observer’s responses and are independent of reference frames. They were used to analyze the 

fixation condition because stimulus motion is the same according to retinotopic and non-retinotopic 

coordinates in this condition. In the smooth pursuit condition, reference frame is incorporated into 

the models above as an additional factor. As shown in Figure 4, the motion of the stimulus is 

analyzed in terms of a non-retinotopic and a retinotopic reference frame. The non-retinotopic 

reference frame refers to the motion of the stimulus on the monitor display and we refer to this as the 

spatiotopic coordinates. By taking into account the eye movement velocity, the motion of the 

stimulus can also be represented as a retinotopic motion-vector, which is referred to as retinotopic 
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coordinates. We considered three different scenarios: (a) motion is processed only in spatiotopic 

coordinates (models SP1_S, SP2_S, SP3c_S, SP3r_S), (b) motion is processed only in retinotopic 

coordinates (models SP1_R, SP2_R, SP3c_R, SP3r_R), and (c) both spatiotopic and retinotopic 

coordinates are used, or perhaps there is a gradual transition from one to the other such that they 

become active simultaneously (models SP1_SR, SP2_SR, SP3c_SR, SP3r_SR). 

 

-----  insert Figure 4 here  ----- 

 

We present below the models used in our analyses; the detailed explanations of these models are 

provided in the Supplemental Information section. Briefly, the error distribution obtained from the 

data is fitted by an embedded family of statistical distributions. The member of the family that 

provides the “best fit” is selected to interpret the data. As explained below, parameters of the model 

are interpreted in terms of observer’s accuracy, precision, guess rate, and misbinding errors. 

 

Fixation-Condition Models 

Model F1: Gaussian  

This model is the cumulative distribution function of a circular (wrapped) Gaussian:  

                                                            CDF(𝜀) = CDF{G(𝜀; 𝜇, 𝜎)},  (1) 

where the cumulative distribution function CDF(𝜀) of the error variable 𝜀 (𝜀 = reported direction of 

motion - actual direction of motion) is given by a Gaussian distribution G(𝜀; 𝜇, 𝜎) whose parameters 

represent the accuracy (mean: 𝜇) and the precision (1 𝜎⁄ , where 𝜎 is the standard deviation) of 

processing. The precision parameter 1 𝜎⁄  captures the qualitative aspect of performance, with 

smaller values of 𝜎 corresponding to higher qualities of encoding for the processed items.  

Model F2: Gaussian + Uniform 

In this model (Zhang & Luck, 2008), the distribution of errors is represented by:  

                                     CDF(𝜀) = CDF{𝑤. G(𝜀; 𝜇, 𝜎) + (1 − 𝑤). U(−180,180)} ,          (2) 

where the cumulative distribution function CDF(𝜀) is obtained from the corresponding probability 

density function that consists of two components:  

(a) A Gaussian distribution G(𝜀; 𝜇, 𝜎) described in the Gaussian model  

(b) A uniform distribution U over the interval (-180, 180), which represents guessing  
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The weight of the uniform distribution (1 - w) represents the proportion of trials in which 

observers base their responses on guesses rather than on the target information available. The weight 

w of the Gaussian captures the quantitative aspect of performance by providing a relative measure 

for the intake of encoding, with a larger value corresponding to a greater possibility that a response 

is based on having some access to information from the cued target. Traditionally, the term capacity 

is used in the literature, as opposed to intake. By definition, capacity refers to the maximum amount 

of information that can be processed and/or stored. Hence, capacity refers in general to a fixed 

property of the system. Implicit in the definition of capacity is the idea that performance is 

unaffected by set-size when it is smaller than the capacity. This condition does not hold for the 

perception of motion-direction, or changes in the direction of motion, where substantial drop in 

precision for reporting direction of motion (or increase in threshold when detecting deviations) is 

seen with increases of set-size, even for set-sizes of one or two (Tripathy & Barrett, 2004; Levi & 

Tripathy, 2006; Tripathy, Narasimhan & Barrett, 2007; Tripathy & Levi, 2008; Narasimhan, 

Tripathy & Barrett, 2009; Shooner et al, 2010; Öğmen et al, 2013; Huynh et al, 2015). This drop in 

performance with set-size necessitates an alternative way of characterizing the amount of 

information processed and/or stored in a given condition. For this purpose, we use the term intake, 

which represents the quantity of information processed/stored under a given stimulus condition (e.g., 

set-size). As an analogy, the capacity of a room can be 50 people (i.e., the maximum number of 

people in the room), whereas under a given situation the room may be holding only 26 people 

(intake). As mentioned above, research indicates that performance decreases with set-size in a 

continuous manner and a single capacity parameter is not adequate to characterize the amount of 

information that is processed and/or stored. Instead, using two parameters, one representing the 

variable quantity of information (intake) and a second one representing the quality of information 

(precision), appears to be a better theoretical approach  (see for example the “leaky flask” model 

in Öğmen et al, 2013). 

 Models F3c and F3r: Gaussian + Uniform + Gaussian  

These models (Bays et al., 2009) include an additional term to account for misbinding errors 

when observers get confused and report another object instead of the selected target:  

CDF(𝜀) = CDF{𝑤. G(𝜀; 𝜇𝑡, 𝜎𝑡) + (1 − 𝑤 − 𝑤𝑚). U(−180,180) + 𝑤𝑚. Si=1;i≠t
T [G(𝜀; 𝜇𝑡 + 𝜀𝑖,𝑡, 𝜎𝑡)]} ,  

 (3)        
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where the first two terms represent the same Gaussian and Uniform distributions as in the 

Gaussian+Uniform model and the third term represents errors stemming from misbinding reports. 

The selection operator  𝑆𝑖=1;𝑖≠𝑡
𝑇 [. ] determines which item from the set of (T-1) non-cued objects is 

the one that generates the subject’s response due to a misbinding error. We analyzed two versions of 

this model— i.e., misbinding with the object that is closest to the cued target in either the cued-

feature space (closest cued-feature: Position – model F3c) or the reported-feature space (closest 

reported-feature: Motion direction – model F3r).  

Smooth-Pursuit Condition Models 

For all models in this section, the error variable is denoted by 𝜀𝑠 to emphasize the fact that we 

consistently computed errors in spatiotopic coordinates. On the circular ring that represents all 

possible values of motion direction, the actual motion direction of the target coincides with the 

origin of the spatiotopic coordinate system. A conversion parameter is included where necessary to 

convert spatiotopic errors to equivalent retinotopic errors. The equations are similar if one prefers to 

compute errors in retinotopic coordinates, but the sign of the conversion parameter needs to be 

reversed.   

Model SP1_S: Spatiotopic Gaussian  

This model has the same form as model F1:  

                                                            CDF(𝜀𝑠) = CDF{G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠)},  (4) 

where 𝜇𝑠 and 1 𝜎𝑠⁄  respectively represent the accuracy and precision of spatiotopic processing.  

Model SP1_R: Retinotopic Gaussian  

This model also consists of the CDF of a circular Gaussian: 

                                                            CDF(𝜀𝑠) = CDF{G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)},  (5) 

where 𝜇𝑟 and 1 𝜎𝑟⁄  respectively represent the accuracy and precision of retinotopic processing. The 

model assumes statistical analysis of retinotopic errors to produce a probability density function 

peaking near the actual retinotopic direction of motion and decaying for larger magnitudes of error. 

However, since the error variable 𝜀𝑠 is calculated with respect to the actual spatiotopic direction of 

motion, the mean of the Gaussian must be shifted from the origin by an angle 𝛽 determined by the 

difference between the actual spatiotopic and retinotopic directions. This angle is given by (see 

Figure 4):   
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                                                              𝛽 = sin−1[
|𝑣𝑝⃗⃗ ⃗⃗  |

|𝑣𝑟⃗⃗⃗⃗ |
sinα] ,                                                             (6) 

where |𝑣𝑝⃗⃗⃗⃗ | and |𝑣𝑟⃗⃗  ⃗| are the magnitudes of the pursuit and retinotopic motion vectors, respectively, 

and α is the angle between spatiotopic and pursuit motion vectors. 

 

Model SP1_SR: Spatiotopic Gaussian + Retinotopic Gaussian  

This model is the CDF of a weighted sum of two circular Gaussians:  

                                  CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + (1 − 𝑤𝑠). G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)},  (7) 

where the weights 𝑤𝑠 and (1-𝑤𝑠) represent the relative contributions (or intakes) of spatiotopic 

processing (with accuracy 𝜇𝑠 and precision 1 𝜎𝑠⁄ ) and retinotopic processing (with accuracy 𝜇𝑟 and 

precision 1 𝜎𝑟⁄ ), respectively. The means of the two components are separated by an angle 𝛽 

determined by equation (6).  

 

Model SP2_S: Spatiotopic Gaussian + Uniform 

This model has the same form as model F2:  

                                     CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + (1 − 𝑤𝑠). U(−180,180)} ,          (8) 

where the first component is the Gaussian distribution described in model SP1_S, and the second 

component is a uniform distribution U over the interval (-180, 180), which represents guessing. The 

weights 𝑤𝑠 and (1-𝑤𝑠) represent the intake of spatiotopic processing and guess rate,  respectively. 

Model SP2_R: Retinotopic Gaussian + Uniform 

This model also has two components:  

                                     CDF(𝜀𝑠) = CDF{𝑤𝑟 . G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟) + (1 − 𝑤𝑟). U(−180,180)} ,          (9) 

where the first component is the Gaussian distribution described in model SP1_R, and the second 

component is a uniform distribution U over the interval (-180, 180), which represents guessing. The 

weights 𝑤𝑟 and (1-𝑤𝑟) represent the intake of retinotopic processing and guess rate, respectively. 

The angle 𝛽 is determined by equation (6). 

Model SP2_SR: Spatiotopic Gaussian + Retinotopic Gaussian + Uniform  

This model combines models SP2_S and SP2_R and is represented by: 
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   CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + 𝑤𝑟 . G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)  + (1 − 𝑤𝑠 − 𝑤𝑟). U(−180,180)}, (10) 

where the weights 𝑤𝑠, 𝑤𝑟 and (1 − 𝑤𝑠 − 𝑤𝑟) represent the relative contributions (or intakes) of 

spatiotopic processing (with accuracy 𝜇𝑠 and precision 1 𝜎𝑠⁄ ), retinotopic processing (with accuracy 

𝜇𝑟 and precision 1 𝜎𝑟⁄ ), and guess rate, respectively. The means of the two Gaussian distributions 

are separated by an angle 𝛽 determined by equation (6). 

Models SP3c_S and SP3r_S: Spatiotopic Gaussian + Uniform + Spatiotopic Misbinding Gaussian 

These models are similar to models F3c and F3r but all components are assumed to be only 

spatiotopic: 

CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + (1 − 𝑤𝑠 − 𝑤𝑠𝑚). U(−180,180)  

                                                                                           + 𝑤𝑠𝑚. Si=1;i≠t
T [G(𝜀𝑠; 𝜇𝑠 + 𝜀𝑖,𝑡, 𝜎𝑠)]},  (11) 

where the first two terms represent the same Gaussian and Uniform distributions as in model SP2_S 

and the third term represents errors stemming from misbinding. The weights 𝑤𝑠, 𝑤𝑠𝑚 and (1 − 𝑤𝑠 −

𝑤𝑠𝑚) represent the intake of spatiotopic processing (with accuracy 𝜇𝑠 and precision 1 𝜎𝑠⁄ ), 

misbinding rate, and guess rate, respectively. The misbinding term is expected to also have a 

Gaussian distribution, with the same standard deviation as the first Gaussian but with the mean 

shifted from the first Gaussian by the difference 𝜀𝑖,𝑡 between the cued target’s and the misbinding 

object’s directions of motion. Similar to models F3c and F3r, models SP3c_S (closest cued feature) 

and SP3r_S (closest reported feature) differ in how the selection operator 𝑆𝑖=1;𝑖≠𝑡
𝑇 [. ] determines the 

misbinding item from the set of (T-1) non-cued objects. 

Models SP3c_R and SP3r_R: Retinotopic Gaussian + Uniform + Retinotopic Misbinding Gaussian 

These models are similar to models F3c and F3r but all components are assumed to be only 

retinotopic: 

CDF(𝜀𝑠) = CDF{𝑤𝑟 . G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)  + (1 − 𝑤𝑟 − 𝑤𝑟𝑚). U(−180,180) 

                                                                                                 + 𝑤𝑟𝑚. Si=1;i≠t
T [G(𝜀𝑠; 𝜇𝑟 + 𝜀𝑖,𝑡 + 𝛽𝑖, 𝜎𝑟)]}, (12) 

where the first two terms represent the same Gaussian and Uniform distributions as in model SP2_R 

and the third term represents errors stemming from misbinding. The weights 𝑤𝑠, 𝑤𝑟𝑚 and (1 − 𝑤𝑟 −

𝑤𝑟𝑚) represent the intake of retinotopic processing (with accuracy 𝜇𝑟 and precision 1 𝜎𝑟⁄ ), 
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misbinding rate, and guess rate, respectively. The mean of the first Gaussian is shifted from the 

origin by an angle 𝛽 determined by equation (6).  

Models SP3c_SR and SP3r_SR: Spatiotopic Gaussian + Retinotopic Gaussian + Uniform +         

                                                 Spatiotopic Misbinding Gaussian + Retinotopic Misbinding Gaussian 

These two models are represented by the following equation: 

CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + 𝑤𝑟 . G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)                                                          

+ (1 − 𝑤𝑠 − 𝑤𝑟 − 𝑤𝑠𝑚 − 𝑤𝑟𝑚). U(−180,180) 

                                     + Si=1;i≠t
T [𝑤𝑠𝑚. G(𝜀𝑠; 𝜇𝑠 + 𝜀𝑖,𝑡, 𝜎𝑠) + 𝑤𝑟𝑚. G(𝜀𝑠; 𝜇𝑟 + 𝜀𝑖,𝑡 + 𝛽𝑗 , 𝜎𝑡)]} },  (13)       

where the first three terms are the same spatiotopic Gaussian, retinotopic Gaussian and the Uniform 

distributions as in model SP2_SR, and the last two terms represent errors stemming from misbinding 

reports. The selection operator 𝑆𝑖=1;𝑖≠𝑡
𝑇 [. ] determines from the set of (T-1) non-cued objects the 

misbinding item. Again, this can be either the ‘closest cued feature’ item (model SP3c_SR) or the 

‘closest reported feature’ item (model SP3r_SR). Similar to the selected target, this misbinding item 

also produces a spatiotopic (fourth term) and a retinotopic (fifth term) Gaussian.  

 

 

RESULTS 

Eye tracking data  

In our experiments, observers were required to follow eye-movement instructions while paying 

sufficient attention to the stimuli. Too many or too frequent invalid fixations/SPEMs in a block 

might lead to unreliable data because observers would then put most of their effort into the task of 

gaze control. Therefore, we only accepted blocks with the proportion of valid trials >=50% (See 

Methods for validity criteria in each condition). That is, a block was excluded if more than 56 trials 

were needed to obtain 28 valid trials. However; as shown below, we obtained a much higher 

proportion of valid trials on average. In addition, when an observer had 5 trials rejected in succession 

during a block of trials, we assumed the eye tracker did not hold calibration, or more likely, the 

calibration itself was inaccurate, due presumably to head or body movements. When this happened 

part way during a run, we paused the experiment to adjust and recalibrate the eye tracker and then 

resumed from where the run was paused. We allowed two such interruptions per block. However, we 
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generally discarded the block and gave observers a break if performance did not improve much after 

each recalibration. Finally, averaging across acceptable blocks, all observers had the proportion of 

valid trials >85% in fixation experiments and >70% in SPEM experiments (less than 824 and 1000 

trials were needed to obtain 700 valid trials, respectively).  

Figure 5 plots some examples of two-dimensional gaze traces in the SPEM condition. Also, we 

projected and computed the changes of eye positions along the pursuit target’s direction of motion 

during each trial. The relative positions between eye and pursuit target are shown in Figure 6 as a 

function of time for some other example trials in the SPEM condition. Figures 5 and 6 suggest that, in 

general, the eye pursued the target with both directional and positional deviations. During the 

presentation of the stimuli, the eye might move in a direction not perfectly aligned with that of the 

pursuit target, or slightly lagging behind or running ahead of the target. To ensure accuracy, our 

approach for the decomposition of spatiotopic and retinotopic components shown in Figure 4 was 

therefore performed based on the actual eye-velocity vector instead of that of the pursuit target. 

However, the use of theoretical (i.e., pursuit target) velocity also produced very similar results (see 

Supplemental Information). For each trial, we fit a line to the last 200-ms part of eye movement 

trajectory during which the stimuli were presented, and calculated the actual direction of pursuit 

according to the slope of the line. The magnitude of the eye velocity vector was taken as the mean 

velocity over the critical period that had been calculated when considering pursuit gain (see Criteria for 

a valid smooth pursuit trial). 

 

-----  insert Figure 5 here  ----- 

 

-----  insert Figure 6 here  ----- 

In Figure 7, the green line shows the trace of eye velocity on an example trial. Velocity was 

computed by digital differentiation of eye position in the direction of target motion after every 10 ms 

(display sampling frequency=100 Hz). To reduce noise, we used a low-pass filter with a cutoff 

frequency of 20 Hz (Butterworth, order = 10). The filtered trace is in blue. As mentioned earlier, 

averaged velocity (and that for either its horizontal or vertical component, neither of which is shown 

here) during the last 300-ms period had to fall in the range [0.7, 1.3] of target velocity (grey shaded 

area; target velocity = 5 deg/s). The black line shows the average of filtered traces obtained from 100 
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randomly selected trials. In general, there is a gradual drop of eye velocity in the critical pursuit 

interval, which can be explained by the observer's anticipation of when and where the target stops 

moving (Robinson et al., 1986). However, the requirement for pursuit gain in this interval is still 

guaranteed. 

 

-----  insert Figure 7 here  ----- 

 

Overall performance 

 

Experiments 1a and 2a: Stimulus Encoding  

Figure 8 plots error magnitude (|𝜀|; right Y-axes) and transformed performance (𝑇𝑃 = 1 −

|𝜀|

180
; left Y-axes) as a function of set size for the two eye movement conditions: (1) Fixation: 

Experiment 1a, left panel; and (2) SPEM: Experiment 2a, right panel. The transformation metric TP 

is defined in the same way as in our previous studies (Shooner et al., 2010; Öğmen et al., 2013; 

Huynh et al., 2015). TP can take on any value in the range [0,1], in which the values of 1 and 0.5 

correspond to perfect and chance levels of performance, respectively. Since stimulus motion is 

different according to spatiotopic and retinotopic coordinates in the SPEM condition, we consider 

SPEM performance measured in each coordinate system separately. We first show here spatiotopic 

performance (𝜀 = 𝜀𝑠 in Figure 4). A two-way repeated-measures ANOVA with Huynh-Feldt 

correction for sphericity shows a non-significant main effect of eye movement (fixation vs. SPEM-

spatiotopic: F(1,3)=1.179, p=0.357), a significant main effect of set size (F(3.776,11.329)=121.716, 

p<0.0001, 𝜂𝑝
2=0.976), and a significant interaction between the two factors (F(2.832,8.497)=4.577, 

p=0.036, 𝜂𝑝
2=0.604). This significant interaction appears to be mainly caused by the difference 

between fixation and SPEM-spatiotopic performance at small set sizes (see Figure 10). We 

conducted paired-samples t-tests, with Bonferroni correction for multiple comparisons (two-tailed, 

𝛼=0.00714), to compare fixation and SPEM-spatiotopic performance at different set sizes. A 

significant difference was found only at a set size of 1 (t(3)=6.568, p=0.007). In fact, one observer 

(DHL) seems to have a different pattern of behavior than the others: This observer’s fixation 

performance was consistently better than SPEM-spatiotopic performance for all set sizes, whereas 

for other observers fixation performance was consistently better than SPEM-spatiotopic performance 
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for only set size of one. However, we observed no statistical changes when observer DHL was 

removed from the analyses.  

 

-----  insert Figure 8 here  ----- 

 

-----  insert Figure 9 here  ----- 

 

SPEM retinotopic performance was calculated based on the angular deviation between 

retinotopic and reported motion vectors (𝜀 = 𝜀𝑟 in figure 4). Retinotopic |𝜀| and TP are shown in 

Figure 9 – left panel. The main effect of eye movement becomes significant when comparing fixation 

with SPEM retinotopic performance (F(1,3)=16.595, p=0.027, 𝜂𝑝
2=0.847), and SPEM spatiotopic 

with SPEM retinotopic performance (F(1,3)=82.879, p=0.03, 𝜂𝑝
2=0.965). In both cases, the main 

effect of set size and the interaction between eye movement and set size are significant. A one-way 

repeated-measures ANOVA of retinotopic SPEM performance also returns a significant effect of set 

size (F(6,18)=20.968, p<0.0001, 𝜂𝑝
2=0.875).  

 

-----  insert Figure 10 here  ----- 

 

Fixation, SPEM-spatiotopic and SPEM-retinotopic performance averaged across observers are 

shown in Figure 10. Compared with a similar condition in our previous study (Huynh et al., 2015: 

Figure 2, middle panel, blue line), performance observed in both the fixation and SPEM (spatiotopic 

or retinotopic TP) conditions is worse
2
. This is predictable because it is likely that, when observers 

were required to fixate or pursue a target in the present experiment
3
, more attention was drawn 

towards the target and less attention was distributed among the moving stimuli (Intriligator & 

Cavanagh, 2001). However, the progressive decay of performance with increasing set size, which 

indicates an early bottleneck of motion processing at the encoding stage, is consistent with our 

previous findings (Öğmen et al., 2013; Huynh et al., 2015). 

                                                           
2
 One observer (DHL) participated in both studies. His performance is only worse in the SPEM condition. There is no 

clear difference in his performance between the fixation condition and the Huynh et al. study (see Figure S1.1-middle). 
3
 In the previous experiment, although we encouraged observers to maintain their eyes at the center of the screen during 

each trial in order to pay as equal attention as possible to all objects, fixation was not strictly required.  
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Superior performance found during pursuit in spatiotopic coordinates, compared with that in 

retinotopic coordinates, indicates that spatiotopic encoding dominates and/or has higher precision 

compared to retinotopic processing. To roughly assess the relative contribution of each component, 

let us consider the extreme case in which we assume motion is encoded only in a spatiotopic 

reference frame. If there were no noise, guessing, or non-target misreporting in observers’ responses, 

spatiotopic performance is expected to be perfect (TP=1.0) whereas retinotopic performance is at 

some lower level, which can be calculated based on the average difference between spatiotopic and 

retinotopic directions of motion (𝛽 in Figure 4). As shown in Figure 9 – right panel, this level of 

performance is higher than chance (mean~=0.75). Because 𝛽 does not depend on set size or on the 

actual response of the observers, we observe, as expected, a performance level that is independent of 

set size (F(1,3)=9.865, p=0.052, 𝜂𝑝
2=0.767)

4
. Comparing the left and right panels of Figure 9, one 

observes that performance calculated according to the retinotopic reference frame is higher than 

what one would expect from the case with perfect spatiotopic encoding only for set size 1 

(t(3)=10.459, p=0.002, with α=0.007 with Bonferroni correction). Hence, we can state that for set 

size 1, it is necessary to add the retinotopic reference frame contribution to that of the spatiotopic 

reference frame to explain the overall performance. On the other hand, we found that performance 

expressed in terms of a spatiotopic reference frame is not significantly different than overall 

performance for set sizes 3 and above. Taken together, our results suggest that, at the stimulus 

encoding stage, motion stimuli are encoded mainly in a spatiotopic reference frame with a minor 

contribution from the retinotopic reference frame in the special case of a single target in motion. 

Inspection of Figure 10 also shows that for large set sizes (8-12) the difference between reference 

frames vanish. Previously, we proposed a “leaky-flask” model of information processing capacity, 

which states that significant capacity limits exist prior to memory stages (Öğmen et al., 2013; Huynh 

et al., 2015). Within the context of this model, we can speculate that at large set sizes, observers start 

to encode the motion direction of stimuli in more abstract terms such as “moving towards upper right 

corner”, rather than metric encoding in a specific reference frame. Whereas “moving towards upper 

                                                           
4
 It is important to note that � is distributed non-uniformly on the interval [-180, +180] across trials. This is because the 

spatiotopic and retinotopic components are not independent but systematically correlated. The directions of motion for 

the pursuit target and stimuli were randomly chosen, hence their difference (� in Figure 4) is random. However, unless 

� is sufficiently small and eye velocity is bigger than spatiotopic velocity, the value of � is in general smaller than 90 

deg (chance level). The same logic holds if one assumes motion is encoded only in retinotopic coordinates. In such a 

case, perfect responses would produce a retinotopic TP of 1.0 and a spatiotopic TP the same as retinotopic TP (Figure 9 

– right panel) when spatiotopic encoding is assumed.   
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right corner” may be considered as being based on a spatiotopic reference frame, the key point is that 

it is a non-metric encoding (there is no explicit quantitative measure of angle). Given that spatiotopic 

and retinotopic reference frames are correlated, one would expect the difference between the two 

reference frames to vanish, even though performance is still better than chance. 

Similar observations have been made in previous studies of ensemble coding. Corbett and 

Melcher (2014) had observers adapting to mean-size of dots of various sizes and examined the 

reference frame used for the resulting size aftereffect. The mean-size aftereffects (a test dot appeared 

larger following adaptation to small dots and smaller after adaptation to large dots) were seen when 

the test dot was presented at the appropriate retinotopic or spatiotopic location relative to the adapted 

region, or even at locations that were neither retintopic or spatiotopic, but were within the adapted 

hemifield, suggesting that multiple reference frames are used in the encoding of mean-size. Corbett 

and Melcher suggest that ensemble representations may be available at multiple levels across the 

hierarchy of visual processing and these representations efficiently represent abstract, global 

properties. Even though our study did not explicitly ask observers to report ensemble properties of 

the stimuli, the use of multiple frames and the abstract encoding of motion may be indicative of the 

implicit intrusion of ensemble representations for the larger set-sizes (see Brady & Alvarez, 2015). 

However, care must be exercised when extrapolating across feature domains with regard to 

principles of ensemble coding (Hubert-Wallander & Boynton, 2015).   

Experiments 1b and 2b: Sensory memory and VSTM 

Figure 11 plots fixation (left), SPEM spatiotopic (middle), and SPEM retinotopic (right) 

performance as a function of cue delay. Average data are shown in Figure 12. A two-way repeated-

measures ANOVA with Huynh-Feldt correction for sphericity shows a significant main effect of eye 

movement (fixation vs. SPEM spatiotopic: F(1,3)=35.583, p=0.009, 𝜂𝑝
2=0.922), a significant main 

effect of cue-delay (F(6,18)=8.948, p<0.0001, 𝜂𝑝
2=0.749), and a non-significant interaction between 

the two factors (F(3.135,9.405)=0.762, p=0.547, 𝜂𝑝
2=0.203). Given the insignificant difference 

between fixation and SPEM spatiotopic performance observed at the encoding stage for set size 6 in 

Experiments 1a and 2a, we carried out pairwise comparisons to examine whether the significant 

effect of eye movement we just found exists across all three processing stages (encoding, sensory 

memory, and VSTM). We grouped the data according to corresponding groups of cue delay samples 

and ran paired-samples t-tests to compare fixation and SPEM spatiotopic TPs for each group. 
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Results from a similar experimental condition in our previous study suggest that the two samples at 1 

s and 3 s mainly involve the operation of VSTM whereas shorter non-zero-delay samples reflect 

sensory memory (see Huynh et al. (2015): Table 2 – row 3). This can be confirmed in the current 

study by inspection of the average fixation and SPEM spatiotopic performance in Figure 12, which 

conform closely to an exponential decay function. Using the same method as in Öğmen et al. (2013) 

to demarcate sensory and VSTM, we fit observers’ average performance in each eye movement 

condition to an exponential of the form A+B𝑒𝑡/𝜏 and obtained time-constants (𝜏) of 292 and 154 ms 

for the fixation and SPEM (spatiotopic) cases, respectively. Although performance in the latter case 

reaches steady-state level that represents VSTM earlier (3𝜏=462 ms, which precedes the sample at 

500 ms), it is more reasonable to keep the demarcation between the two memory systems consistent 

across eye movement conditions and in the same way as in Huynh et al. (2015). Three paired-

samples t-tests (two-tailed, 𝛼=0.0167) yield a significant difference between fixation and SPEM 

spatiotopic TPs at the sensory memory stage (t(3)=10.052, p=0.002), but not at the encoding 

(t(3)=3.490, p=0.040) or VSTM (t(3)=3.460, p=0.041) stages. The insignificant difference at the 

encoding stage (zero cue delay) is consistent with the finding in Experiments 1a and 2a. We also find 

that spatiotopic performance is significantly better than retinotopic performance (F(1,3)=41.217, 

p=0.008, 𝜂𝑝
2=0.932). However, pairwise comparisons (two-tailed, 𝛼=0.0167) show that the 

difference is only significant at the encoding stage (t(3)=6.029, p=0.009). The insignificant 

difference found at the two memory stages is not necessarily a hallmark of equivalent contributions 

of the spatiotopic and retinotopic representations. The drop of spatiotopic performance over time due 

to increasing guessing and misreporting responses might be the main cause because a one-way 

repeated-measures ANOVA with Huynh-Feldt correction for sphericity shows that the effect of cue 

delay on retinotopic performance is not significant (F(3.051,9.152)=3.575, p=0.059, 𝜂𝑝
2=0.544). If 

indeed, at set size 6 the retinotopic reference frame has no contribution to the performance, as 

suggested by the findings of Experiment 1, performance plotted in terms of the retinotopic reference 

frame may represent an overall lower baseline, independent of stimulus encoding and memory 

stages.  

 

Statistical modeling 

Model selection 
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Model selection was used to find the model or group of models that best describe the behavioral 

data. In the Least Squares method, the models were compared based on their adjusted 𝑅2 values
5
, a 

measure of their goodness of fit. The model with the highest adjusted 𝑅2 was considered the best-

performing model. Table 1 provides average values of adjusted 𝑅2 obtained for all conditions and 

models. In the fixation condition, our analyses in both experiments 1a and 1b show that the three 

models F2, F3c, and F3r have equivalent performance, which is significantly better than that of 

model F1. Model F2 was selected because it contains the smallest number of free parameters. In the 

SPEM condition, as stated in the Data Analysis section, our models can be grouped based on two 

factors, i.e. uncertainty and reference frame. The former one is the same as used to formulate the 

models in the fixation condition, which is to consider whether a model accounts for guessing and 

misreporting in the observers’ responses. The latter factor indicates the nature of reference systems 

(spatiotopic, retinotopic, or combined) associated with the encoding and retention of information 

assumed by each model. Consistently across experiments 1b and 2b, we find that performance is 

equivalent for the SP2_*, SP3c_*, and SP3r_* groups, which is significantly better than the SP1 

group. Equivalent performance was also found for the spatiotopic (*_S) and combined (*_SR) 

groups, which is significantly better then the retinotopic (*_R) group. The result does not change 

when comparing the spatiotopic (*_S) and combined (*_SR) groups for each memory stage 

separately. Taken together, the model SP2_S was chosen for its smallest number of parameters. This 

finding implies that a spatiotopic model is sufficient to fully account for the variability in the 

observers’ behavior and reinforces our speculation above that the encoding and retention of motion 

information is essentially spatiotopic. 

Parameter estimation 

We report in this section estimates for the parameters of the winning model in each condition. 

Figure 13 plots averaged values for intake (along with guess rate = 1 − intake) and precision 

obtained in experiments 1a (fixation) and 2a (SPEM) as a function of set size. As mentioned in the 

Data analysis section, intake (𝑤 in model F2 or 𝑤𝑠 in model SP2_S) and precision (1/𝜎 in model F2 

or 1/𝜎𝑠 in model SP2_S) respectively represent the quantitative and qualitative aspects of 

                                                           
5  The following equation was used to compute adjusted 𝑅2: 

  𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2  = 1 − (1 − 𝑅2)
𝑛−1

𝑛−𝑝−1
      

where n is the sample size and p is the number of independent variables (parameters) in the model. 
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performance. We observe a linear drop of intake with increasing set size in both the fixation and 

SPEM conditions, and there is no significant difference between the two conditions. The relationship 

between precision and set size is non-linear with a big difference between the two conditions at a set 

size of 1. However, this difference in precision gradually vanishes at larger set sizes, which explains 

the superior fixation performance only at set size of 1 we found earlier. It should be noted here that 

we excluded this set size when comparing our models (see table 1) because models that contain 

misbinding components are not applicable when there is only a single object presented. For the set 

size of 1, model comparison was run separately, and the winning models remain the same as those 

for the other cases (model F2 in the fixation condition and the spatiotopic model SP2_S in the SPEM 

condition). This suggests that the special finding at a set size of 1 does not come from any apparent 

influence of retinotopic processing but, presumably, from a higher depletion of attentional resources 

caused by oculomotor control in the SPEM condition compared with that in the fixation condition. 

The increase of uncertainty when having larger numbers of objects might have rendered precision in 

both the fixation and SPEM conditions to drop to a level at which the difference in attentional 

deployment was no longer noticeable. 

Figure 14 plots averaged values for intake and precision obtained in Experiments 1b (fixation) 

and 2b (SPEM) as a function of cue-delay. Recall that these two experiments consistently used a set 

size of 6 while varying cue-delay to examine the sensory and VSTM stages of information 

processing. Given a bottleneck of processing at the encoding stage demonstrated by the degradation 

of performance with increasing set size in Experiments 1a and 2a, analyzing the extent to which the 

degradation of performance changes over time provides information about the distribution of 

information loss across different processing stages. According to our previous findings (Öğmen et 

al., 2013; Huynh et al., 2015) and preliminary data for the present experiments (not shown), 

performance at a set size of 1 is relatively stable over the interval 0-3s. In Figure 14, this is 

represented by the horizontal dashed lines extended from the single data points at zero cue delay 

(obtained in the single object condition in Experiments 1a and 2a). The pattern of results for both 

intake and precision is similar in the fixation and SPEM conditions and is consistent with our 

findings in Öğmen et al. study and with the case of cueing position and reporting direction of motion 

in Huynh et al. (2015). That is, we find that most of the decay in precision occurs at the encoding 

stage whereas the decay in intake is more gradual. A one-way repeated-measures ANOVA of 

precision shows no effect of cue-delay in either the fixation or SPEM conditions. For intake, 
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approximately half of the decay is at the encoding stage. These findings are in agreement with our 

Leaky Flask model proposed in Öğmen et al. (2013). 

 

 

GENERAL DISCUSSION 

 

This study aimed to investigate the reference frame used in perceptual encoding and storage of 

visual motion information. In our experiments, observers viewed multiple moving objects and 

reported the direction of motion of a randomly selected item. The task was performed while the 

observers were either fixating a stationary point or smoothly pursuing a target moving at a constant 

velocity. In the fixation condition, the non-retinotopic component of a motion stimulus is fully 

confounded with its retinotopic component. In the SPEM condition, with eyes moving from one 

position to another, the two components can be dissociated. Using a vector decomposition technique, 

we were able to compute performance during SPEM with respect to spatiotopic (non-retinotopic) 

and retinotopic motion components and compare them with performance during fixation, which 

serves as the baseline. We also used several hypothetical models to quantitatively and qualitatively 

simulate different aspects, including the possible involvement of each reference frame, of the 

observers’ behaviors.   

 

For the stimulus encoding stage, which precedes memory, we found that the reference frame 

depends on stimulus set-size. For the special case where the stimulus consists of a single moving 

target, the spatiotopic reference frame had the most significant contribution with some additional 

contribution from the retinotopic reference frame. To a close approximation, the relative 

contributions of the two reference frames can be quantified based on the two extreme cases we 

discussed earlier for a set size of 1. Average performance at a set size of 1 in the fixation condition 

(approximately 0.96; Figure 8 – left panel) can be considered as SPEM spatiotopic performance if 

motion is assumed to be encoded exclusively in a spatiotopic reference frame. On the other hand, if 

no spatiotopic reference frame is used, SPEM spatiotopic performance is expected to be about 0.75 

(Figure 9 – right panel). There is a total drop of 0.21 in performance between the two extremes. In 

reality, we obtained a SPEM spatiotopic performance of 0.92. This corresponds to a drop of 0.04, 

approximately one fifth of the total drop. Therefore, the contribution ratio of spatiotopic to 
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retinotopic reference frames is roughly 4:1. The contribution of both retinotopic and spatiotopic 

reference frames for isolated moving targets is in agreement with previous studies (Souman et al., 

2005a, 2005b, 2006a; Swanston & Wade, 1988). Although the relative contributions of the reference 

frames were not provided in these studies, some comparisons can be made between our and their 

data. To account for errors in motion perception during SPEMs, these studies applied a linear model 

(von Holst, 1954) in which the perceived head-centric velocity h’ of a stimulus is viewed as a 

weighted sum of its retinal image velocity r and eye velocity e, i.e.  h’ = .r + .e (for alternative 

models, see Wertheim, 1994; Freeman, 2001; Turano & Massof, 2001). To compute h’, the visual 

system obtains estimates of the actual signals r and e. The weights  and  in the model describes the 

gains associated with these estimates. The deviation of the perceived direction h’ from the physical 

direction h depends on the gain ratio /. During SPEM, the direction of h’ is typically biased 

towards the direction of r, which can be explained by a gain ratio that is smaller than one. The 

smaller the gain ratio is, the larger the bias becomes. In case that  =  = 1, h’ = h = r + e. For 

example, Souman et al. (2005b) measured the perceived motion direction of a stimulus moving at 

various angles (0-360°) relative to the pursuit direction. The perceived direction data were fit to the 

linear model above with the gain ratio / being the only free parameter, which was assumed to be 

fixed across stimulus directions. Souman et al. found a high degree of fit (𝑅2~90%) for most 

observers. They obtained relatively low estimates for /, and this ratio decreased with increasing 

stimulus speed (3°/s: mean=0.53, standard deviation=0.12; 8°/s: mean=0.21, standard 

deviation=0.1; calculations are based on data in Table 1, Souman et al., 2005b). One can predict that, 

if the same stimulus speed as in our study (5°/s) were used, the mean gain ratio would be smaller 

than 0.53 and greater than 0.21. For comparison, we applied the same linear model and simulation 

on our data for the set size of 1 in Experiment 2a and obtained a value of / that is much higher 

than predicted (/ = 0.80, 0.63, 0.77, 0.63 for observers TTN, TAN, QVP, DHL, respectively; 

mean=0.71, standard deviation=0.09). This suggests that our observers generally made smaller errors 

in judging the direction of motion of the stimulus, and one can conclude that the data in the Souman 

et al. study show a larger contribution of the retinotopic reference frame compared to our finding. 

Let us note, however, that the estimation of contribution ratio we obtained earlier is only meaningful 

on average data, i.e. performance for different deviations between the pursuit target and the direction 

of stimulus motion is averaged. The reason for this is that, given the visual system uses some fixed 

gain ratio for different stimulus directions, the magnitude of errors of the judged motion direction 
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during SPEM typically depends on the angle between the stimulus and pursuit target motion 

directions. With the exception of Souman et al. (2005b), most previous studies of motion perception 

during SPEM (Becklen et al., 1984; Wallach et al., 1985; Souman et al., 2005a; Souman et al., 

2006a; Souman et al., 2006b; Swanston & Wade, 1988) focus on horizontal and vertical movements 

of stimuli and the pursuit target. Therefore, it is hard to quantitatively compare those with our study. 

However, one potentially important factor that might amplify the contribution of retinotopic 

encoding in all of these studies is that their experiments were performed in total darkness, with only 

the stimulus and the pursuit target visible. This would have eliminated the stationary background and 

the display as usable spatiotopic reference frames. The use of a relatively short stimulus presentation 

duration (200 ms) in our experiments is unlikely to be a reason for the weak effect of retinotopic 

reference frame we observed. It has been shown that decreasing the stimulus presentation duration 

increases errors (biases) in the perceived motion direction during pursuit (Mack & Herman, 1978; 

De Graaf & Wertheim 1988; Souman et al., 2005a). Therefore, the shorter the presentation duration, 

the stronger the expected contribution of the retinotopic reference frame. Furthermore, as shown in 

Souman et al. (2005a), the effect of stimulus duration is negligible for low stimulus velocities, such 

as that used in our experiments (5°/s). 

When the number of items in the stimulus increased, the spatiotopic reference frame alone was 

able to account for the overall performance. Finally, when the number of items became large, the 

distinction between reference frames vanished. We interpret this finding as a switch to a more 

abstract encoding of motion direction, such as “towards lower right”, instead of a metric encoding 

within a specific reference frame. Our earlier studies showed significant capacity limits already at 

the stimulus encoding stage, leading to the “leaky flask model” (see Öğmen et al., 2013 - Figure 10). 

The results of this study are also in agreement with the leaky flask model. When the stimulus set-size 

increases, due to capacity limits, it may not be possible for the visual system to encode all directions 

of motion according to a reference-frame metric. One strategy would be then to switch to a more 

descriptive non-metric encoding. Another way the visual system can handle the complexity of a 

stimulus comprising multiple moving targets (large set-size) is through Gestalt grouping 

mechanisms. For example, the point lights placed on a person in the biological motion paradigm 

(Johansson, 1973) creates a very complex stimulus; however, by grouping these points into a 

meaningful Gestalt (Yantis, 1992), the visual system is capable of computing a common reference 

frame, which can be used to simplify the relative motions of various point lights. Several studies 
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showed that when the stimulus allows grouping of parts, motion groupings based non-retinotopic 

reference frames (relative motion) account for perceived direction of motion (Duncker, 1938; 

Johansson, 1973; Boi et al., 2009; Noory et al., 2015; Agaoglu et al., 2015a,b). In fact, Agaoglu et al. 

(2015b) quantified the contributions of retinotopic, spatiotopic, and relative-motion reference frames 

and showed that relative motion dominated both during fixation and SPEM, with a contribution 

more than 80% when the distance between the stimuli was 2 degrees. The dominance of the relative 

motion decreased with the distance between stimuli; however, for separations as large as 11 deg, the 

contribution of relative motion was still substantial (60%). Each disk in our experiments here had an 

independently and randomly chosen direction and hence our stimulus was not conducive to this type 

of (relative) non-retinotopic reference frame. Instead, the non-retinotopic reference frame was 

presumably a screen-based (spatiotopic) reference frame. 

SPEM not only causes biases in motion perception but also leads to mislocalizations of stimuli 

(Mita et al., 1950; Ward, 1976; Brenner et al., 2001; van Beers et al., 2001; Rotman et al., 2005; 

Souman et al., 2006a). Importantly, both the magnitude and the direction of mislocalization when 

pursuit is towards the stimulus are different from those when pursuit is away from the stimulus 

(Mitrani & Dimitrov, 1982; Mateeff & Hohnsbein, 1988; Mateeff et al., 1991; Rotman et al., 2004). 

Also, mislocalization is more pronounced for stimuli that are more distant from the pursuit path 

(Souman et al., 2006a). We expect that these asymmetric effects on localization also apply to 

direction-of-motion perception, although the direct physical relationship between location and 

motion may not exist in perceptual terms (Snowden, 1994; Souman et al., 2006a). It should be noted 

that, because the cued target’s location and motion direction, as well as the direction of pursuit were 

chosen randomly across trials, these asymmetries should be averaged out and are not considered in 

our data.  

In terms of memory, we found that performance expressed in terms of a retinotopic reference 

frame did not depend on cue delay, suggesting that the retinotopic reference frame was not used 

during memory storage. The difference between fixation and SPEM performance in terms of a 

spatiotopic reference frame was not significant at stimulus encoding and VSTM stages, but it was 

significant for the sensory memory stage. As mentioned before, whereas earlier studies found that 

sensory memory uses a retinotopic reference frame, more recent studies using sequential 

metacontrast and Ternus-Pikler displays indicate that sensory memory can also use a motion-based 

non-retinotopic reference frame (Ogmen et al., 2006; Otto et al., 2006; Scharnowski et al., 2007; 
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Noory et al, 2015). Because performance in sensory memory in terms of a spatiotopic reference 

frame was superior to that in terms of a retinotopic reference frame and because spatiotopic 

performance showed the typical exponential delay observed in sensory memory (Figure 12), we 

conclude that our findings here are in agreement with the existence of a non-retinotopic sensory 

memory component.  

When set size was large (8-12 objects) motion performance expressed in a spatiotopic reference-

frame in the SPEM condition was comparable to that expressed in a retinotopic reference-frame. 

Similar findings have been reported in a study that investigated ensemble coding of mean-size using 

adaption aftereffects and found that adaptation to mean size occurred in multiple reference-frames, 

that included retinotopic and spatiotopic frames, among others (Corbett & Melcher, 2014). The study 

also reported an abstract representation of mean size, similar to the abstract representation of motion 

direction we find in the current study. While the current study did not specifically investigate 

ensemble encoding of motion, the influence of ensemble coding, for the larger set-sizes we 

investigated, cannot be ruled out (see Brady & Alvarez, 2015). Corbett and Melcher (2014) 

interpreted their findings to suggest that mean-size is represented in multiple levels in the visual 

hierarchy, and this is important for perceptual stability. It is likely that, for large set-sizes, motion 

direction too is represented in multiple reference-frames at different levels in the visual hierarchy, 

facilitating perceptual stability. However, how principles of ensemble coding in one perceptual task 

generalize to another is an open question (Hubert-Wallander & Boynton, 2015). 

In summary, our results along with other recent findings suggest that, whereas a retinotopic 

reference frame may be useful for controlling eye-movements, non-retinotopic reference frames may 

characterize perception and memory. Furthermore, the use of a non-retinotopic reference frame 

appears to be capacity limited. In the case of complex stimuli (large set-size), the visual system may 

use perceptual grouping or summary statistics or ensemble representations in order to simplify the 

complexity of stimuli (as in studies involving mean-size, biological motion, or Ternus-Pikler 

displays), or resort to a non-metric abstract coding of motion information. 
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SUPPLEMENTAL INFORMATION 

 

1. Details of the models 

1.1. Fixation-Condition Models 

Model F1: Gaussian  

This model is the cumulative distribution function of a circular (wrapped) Gaussian:  

                                                            CDF(𝜀) = CDF{G(𝜀; 𝜇, 𝜎)},  (1) 

where the cumulative distribution function CDF(𝜀) of the error variable 𝜀 (𝜀 = reported direction of 

motion - actual direction of motion) is given by a Gaussian distribution G(𝜀; 𝜇, 𝜎) whose parameters 

represent the accuracy (mean: 𝜇) and the precision (1 𝜎⁄ , where 𝜎 is the standard deviation) of 

processing. The precision parameter 1 𝜎⁄  captures the qualitative aspect of performance, with 

smaller values of 𝜎 corresponding to higher qualities of encoding for the processed items.  

For practical implementation, the effect of multiple wrapped Gaussians was tested in Shooner et 

al. (2010). Three Gaussians were initially included in the sum, and the outcome was compared with 

that produced by only one Gaussian. The difference was negligible due to the small variance of the 

distributions, which meant using a single Gaussian was sufficient to model the empirical data, and 

the circular nature of features could be ignored. However, we consistently applied three wraps in all 

conditions in the current study for the following reasons: (a) The variance of our data was large in 

some conditions; (b) the wrapping effect could not be ignored for the misbinding component (see 

Models F3c and F3r; these models were not used by Shooner et al., 2010); and (c) we observed no 

difference between three and five wraps.  

 Model F2: Gaussian + Uniform 

In this model (Zhang & Luck, 2008), the distribution of errors is represented by:  

                                     CDF(𝜀) = CDF{𝑤. G(𝜀; 𝜇, 𝜎) + (1 − 𝑤). U(−180,180)} ,          (2) 

where the cumulative distribution function CDF(𝜀) is obtained from the corresponding probability 

density function that consists of two components:  

(a) A Gaussian distribution G(𝜀; 𝜇, 𝜎) described in the Gaussian model  

(b) A uniform distribution U over the interval (-180, 180), which represents guessing  

The weight of the uniform distribution (1 - w) represents the proportion of trials in which 
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observers base their responses on guesses rather than on the target information available. The weight 

w of the Gaussian captures the quantitative aspect of performance by providing a relative measure 

for the intake of encoding, with a larger value corresponding to a greater possibility that a response 

is based on having some access to information from the cued target.  

 Models F3c and F3r: Gaussian + Uniform + Gaussian  

These models (Bays et al., 2009) include an additional term to account for misbinding errors 

when observers get confused and report another object instead of the selected target:  

CDF(𝜀) = CDF{𝑤. G(𝜀; 𝜇𝑡, 𝜎𝑡) + (1 − 𝑤 − 𝑤𝑚). U(−180,180) + 𝑤𝑚. Si=1;i≠t
T [G(𝜀; 𝜇𝑡 + 𝜀𝑖,𝑡, 𝜎𝑡)]} ,  

 (3)        

where the first two terms represent the same Gaussian and Uniform distributions as in the 

Gaussian+Uniform model and the third term represents errors stemming from misbinding reports. 

The selection operator  𝑆𝑖=1;𝑖≠𝑡
𝑇 [. ] determines which item from the set of (T-1) non-cued objects is 

the one that generates the subject’s response due to a misbinding error. An explanation for the use of 

this selection operator can be found in Huynh et al. (2015). Briefly, to minimize the potential 

interference that results from motion directions that are too close to each other, we constrained our 

stimuli so that no two items in any stimulus have a direction difference of less than 17 degrees. 

Given this constraint, we analyzed two versions of this model— i.e., misbinding with the object that 

is closest to the cued target in either the cued-feature space (closest cued-feature: Position – model 

F3c) or the reported-feature space (closest reported-feature: Motion direction – model F3r). The 

misbinding term is expected also to have a Gaussian distribution, with the same standard deviation 

as the first Gaussian but with the mean shifted from the first Gaussian by the difference 𝜀𝑖,𝑡 between 

the cued target’s and the misbinding object’s directions of motion. This is because the empirical 

CDF is always computed with respect to the cued target item. For the Gaussian component that 

describes misbinding, the wrapping effect cannot be ignored, especially when the misbinding object 

is shifted far away from the center of the first Gaussian. The weight 𝑤𝑚 represents the proportion of 

trials in which misbinding occurs.  

1.2 Smooth-Pursuit Condition Models 

For all models in this section, the error variable is denoted by 𝜀𝑠 to emphasize the fact that we 

consistently computed errors in spatiotopic coordinates. On the circular ring that represents all 
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possible values of motion direction, the actual motion direction of the target coincides with the 

origin of the spatiotopic coordinate system. A conversion parameter is included where necessary to 

convert spatiotopic errors to equivalent retinotopic errors. The equations are similar if one prefers to 

compute errors in retinotopic coordinates, but the sign of the conversion parameter needs to be 

reversed.   

Model SP1_S: Spatiotopic Gaussian  

This model has the same form as model F1:  

                                                            CDF(𝜀𝑠) = CDF{G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠)},  (4) 

where 𝜇𝑠 and 1 𝜎𝑠⁄  respectively represent the accuracy and precision of spatiotopic processing.  

Model SP1_R: Retinotopic Gaussian  

This model also consists of the CDF of a circular Gaussian: 

                                                            CDF(𝜀𝑠) = CDF{G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)},  (5) 

where 𝜇𝑟 and 1 𝜎𝑟⁄  respectively represent the accuracy and precision of retinotopic processing. The 

model assumes statistical analysis of retinotopic errors to produce a probability density function 

peaking near the actual retinotopic direction of motion and decaying for larger magnitudes of error. 

However, since the error variable 𝜀𝑠 is calculated with respect to the actual spatiotopic direction of 

motion, the mean of the Gaussian must be shifted from the origin by an angle 𝛽 determined by the 

difference between the actual spatiotopic and retinotopic directions. This angle is given by (see 

Figure 4):   

                                                              𝛽 = sin−1[
|𝑣𝑝⃗⃗ ⃗⃗  |

|𝑣𝑟⃗⃗⃗⃗ |
sinα] ,                                                             

(6) 

where |𝑣𝑝⃗⃗⃗⃗ | and |𝑣𝑟⃗⃗  ⃗| are the magnitudes of the pursuit and retinotopic motion vectors, respectively, 

and α is the angle between spatiotopic and pursuit motion vectors. 

 

Model SP1_SR: Spatiotopic Gaussian + Retinotopic Gaussian  

This model is the CDF of a weighted sum of two circular Gaussians:  

                                  CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + (1 − 𝑤𝑠). G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)},  (7) 
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where the weights 𝑤𝑠 and (1-𝑤𝑠) represent the relative contributions (or intakes) of spatiotopic 

processing (with accuracy 𝜇𝑠 and precision 1 𝜎𝑠⁄ ) and retinotopic processing (with accuracy 𝜇𝑟 and 

precision 1 𝜎𝑟⁄ ), respectively. The means of the two components are separated by an angle 𝛽 

determined by equation (6). It should be noted here that, for simplicity, we have ignored the 

difference between 𝜇𝑠 and 𝜇𝑟 when talking about the separation between the spatiotopic and 

retinotopic Gaussians because they are in general very small. 

Model SP2_S: Spatiotopic Gaussian + Uniform 

This model has the same form as model F2:  

                                     CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + (1 − 𝑤𝑠). U(−180,180)} ,          (8) 

where the first component is the Gaussian distribution described in model SP1_S, and the second 

component is a uniform distribution U over the interval (-180, 180), which represents guessing. The 

weights 𝑤𝑠 and (1-𝑤𝑠) represent the intake of spatiotopic processing and guess rate,  respectively. 

Model SP2_R: Retinotopic Gaussian + Uniform 

This model also has two components:  

                                     CDF(𝜀𝑠) = CDF{𝑤𝑟 . G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟) + (1 − 𝑤𝑟). U(−180,180)} ,          (9) 

where the first component is the Gaussian distribution described in model SP1_R, and the second 

component is a uniform distribution U over the interval (-180, 180), which represents guessing. The 

weights 𝑤𝑟 and (1-𝑤𝑟) represent the intake of retinotopic processing and guess rate, respectively. 

The angle 𝛽 is determined by equation (6). 

Model SP2_SR: Spatiotopic Gaussian + Retinotopic Gaussian + Uniform  

This model combines models SP2_S and SP2_R and is represented by: 

   CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + 𝑤𝑟 . G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)  + (1 − 𝑤𝑠 − 𝑤𝑟). U(−180,180)}, (10) 

where the weights 𝑤𝑠, 𝑤𝑟 and (1 − 𝑤𝑠 − 𝑤𝑟) represent the relative contributions (or intakes) of 

spatiotopic processing (with accuracy 𝜇𝑠 and precision 1 𝜎𝑠⁄ ), retinotopic processing (with accuracy 

𝜇𝑟 and precision 1 𝜎𝑟⁄ ), and guess rate, respectively. The means of the two Gaussian distributions 

are separated by an angle 𝛽 determined by equation (6). 

Models SP3c_S and SP3r_S: Spatiotopic Gaussian + Uniform + Spatiotopic Misbinding Gaussian 

These models are similar to models F3c and F3r but all components are assumed to be only 

spatiotopic: 
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CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + (1 − 𝑤𝑠 − 𝑤𝑠𝑚). U(−180,180)  

                                                                                           + 𝑤𝑠𝑚. Si=1;i≠t
T [G(𝜀𝑠; 𝜇𝑠 + 𝜀𝑖,𝑡, 𝜎𝑠)]},  (11) 

where the first two terms represent the same Gaussian and Uniform distributions as in model SP2_S 

and the third term represents errors stemming from misbinding. The weights 𝑤𝑠, 𝑤𝑠𝑚 and (1 − 𝑤𝑠 −

𝑤𝑠𝑚) represent the intake of spatiotopic processing (with accuracy 𝜇𝑠 and precision 1 𝜎𝑠⁄ ), 

misbinding rate, and guess rate, respectively. The misbinding term is expected to also have a 

Gaussian distribution, with the same standard deviation as the first Gaussian but with the mean 

shifted from the first Gaussian by the difference 𝜀𝑖,𝑡 between the cued target’s and the misbinding 

object’s directions of motion. Similar to models F3c and F3r, models SP3c_S (closest cued feature) 

and SP3r_S (closest reported feature) differ in how the selection operator 𝑆𝑖=1;𝑖≠𝑡
𝑇 [. ] determines the 

misbinding item from the set of (T-1) non-cued objects. 

Models SP3c_R and SP3r_R: Retinotopic Gaussian + Uniform + Retinotopic Misbinding Gaussian 

These models are similar to models F3c and F3r but all components are assumed to be only 

retinotopic: 

CDF(𝜀𝑠) = CDF{𝑤𝑟 . G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)  + (1 − 𝑤𝑟 − 𝑤𝑟𝑚). U(−180,180) 

                                                                                                 + 𝑤𝑟𝑚. Si=1;i≠t
T [G(𝜀𝑠; 𝜇𝑟 + 𝜀𝑖,𝑡 + 𝛽𝑖, 𝜎𝑟)]}, (12) 

where the first two terms represent the same Gaussian and Uniform distributions as in model SP2_R 

and the third term represents errors stemming from misbinding. The weights 𝑤𝑠, 𝑤𝑟𝑚 and (1 − 𝑤𝑟 −

𝑤𝑟𝑚) represent the intake of retinotopic processing (with accuracy 𝜇𝑟 and precision 1 𝜎𝑟⁄ ), 

misbinding rate, and guess rate, respectively. The mean of the first Gaussian is shifted from the 

origin by an angle 𝛽 determined by equation (6). Note again that 𝜇𝑟 (typically small) is not 

mentioned here for simplicity. The misbinding term is expected to also have a Gaussian distribution, 

with the same standard deviation as the first Gaussian but with the mean shifted from the origin by 

(𝜀𝑖,𝑡 + 𝛽𝑖). In addition to the difference 𝜀𝑖,𝑡 between the cued target’s and the misbinding object’s 

spatiotopic directions of motion, the angle 𝛽𝑖 is included to obtain the retinotopic motion direction of 

the misbinding item. This angle can also be computed using equation (6) but with the misbinding 

item’s instead of the selected target’s velocity vectors. 

Models SP3c_SR and SP3r_SR: Spatiotopic Gaussian + Retinotopic Gaussian + Uniform +         

                                                 Spatiotopic Misbinding Gaussian + Retinotopic Misbinding Gaussian 
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These two models are represented by the following equation: 

CDF(𝜀𝑠) = CDF{𝑤𝑠. G(𝜀𝑠; 𝜇𝑠, 𝜎𝑠) + 𝑤𝑟 . G(𝜀𝑠; 𝜇𝑟 + 𝛽, 𝜎𝑟)                                                          

+ (1 − 𝑤𝑠 − 𝑤𝑟 − 𝑤𝑠𝑚 − 𝑤𝑟𝑚). U(−180,180) 

                                     + Si=1;i≠t
T [𝑤𝑠𝑚. G(𝜀𝑠; 𝜇𝑠 + 𝜀𝑖,𝑡, 𝜎𝑠) + 𝑤𝑟𝑚. G(𝜀𝑠; 𝜇𝑟 + 𝜀𝑖,𝑡 + 𝛽𝑗 , 𝜎𝑡)]} },  (13)       

where the first three terms are the same spatiotopic Gaussian, retinotopic Gaussian and the Uniform 

distributions as in model SP2_SR, and the last two terms represent errors stemming from misbinding 

reports. The selection operator 𝑆𝑖=1;𝑖≠𝑡
𝑇 [. ] determines from the set of (T-1) non-cued objects the 

misbinding item. Again, this can be either the ‘closest cued feature’ item (model SP3c_SR) or the 

‘closest reported feature’ item (model SP3r_SR). Similar to the selected target, this misbinding item 

also produces a spatiotopic (fourth term) and a retinotopic (fifth term) Gaussian. We assume these 

misbinding Gaussians have the same spatiotopic and retinotopic standard deviations as the first two 

terms. The separations between the two spatiotopic Gaussians (𝜀𝑖,𝑡) and between the two retinotopic 

Gaussians (𝜀𝑖,𝑡 + 𝛽𝑗) are determined in the same way as in models SP3c_S, SP3r_S, SP3c_R, and 

SP3r_R. To minimize these models’ degrees of freedom, the ratio of weights for the two misbinding 

Gaussians is assumed to be equal to that for the two target Gaussians (
𝑤𝑠𝑚

𝑤𝑟𝑚
=

𝑤𝑠

𝑤𝑟
). 

 

2. Bayesian inference method: Expectation-Maximization (EM) algorithm 

We applied the same EM algorithm as in Huynh et al. (2015) to optimize our hypothetical models. In 

what follows, we modify the previous computations where necessary to reflect the consideration of 

reference frame as an additional factor in the models. The method, however, remains the same. It 

starts with a certain initial estimate for the parameters whose values will be iteratively updated by 

means of two alternate steps until convergence is observed.  

1) The "E step" is to construct in the parameter space a likelihood (L) function that represents the 

probability that a given model has generated a set of data points. The expectation of L is then 

determined by evaluating its logarithm using the current estimate for the parameters.  
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Assume our model contains a mixture of four wrapped Gaussians and a Uniform distribution as 

follows 
6
: 

p(𝜀) = 𝑤1. ∑ G(𝜀; 𝜇1 + 𝑚2𝜋, 𝜎1)
+∞
𝑚=−∞ + 𝑤2. ∑ G(𝜀; 𝜇2 + 𝑛2𝜋, 𝜎2)

+∞
𝑛=−∞  + 𝑤3. U(−180,180) +

 𝑤4. ∑ G(𝜀; 𝜇4 + 𝑝2𝜋, 𝜎4)
+∞
𝑝=−∞ + 𝑤5. ∑ G(𝜀; 𝜇5 + 𝑞2𝜋, 𝜎5)

+∞
𝑞=−∞  , (14) 

where we have a set of thirteen parameters {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝜇1, 𝜇2, 𝜇4, 𝜇5, 𝜎1, 𝜎2, 𝜎4, 𝜎5} each of 

which has the same meaning as elaborated in the Data analyses section and in the first section of 

Supplementary Material, above. The first five parameters are not independent of each other but sum 

to one (𝑤1 + 𝑤2 + 𝑤3, +𝑤4 + 𝑤5 = 1). Following models SP3c_SR and SP3r_SR, we further 

assume that 
𝑤1

𝑤2
=

𝑤4

𝑤5
 . Also, we substitute 𝜇𝑠 for 𝜇1, (𝜇𝑟 + 𝛽𝑖) for 𝜇2 with 𝛽𝑖 = (the angle between 

the cued target’s spatiotopic and retinotopic motion vectors on trial i). Similarly, we substitute 

(𝜇𝑠 + 𝑑𝑖) for 𝜇4, and (𝜇𝑟 + 𝑑𝑖 + 𝛽𝑖
′) for 𝜇5 with 𝑑𝑖 = (the angle between the cued target’s and the 

(non-cued) misbinding item’s spatiotopic motion vectors on trial i) and 𝛽𝑖
′ = (the angle between the 

misbinding item’s spatiotopic and retinotopic motion vectors on trial i). The same 𝜇𝑠 or 𝜇𝑟 appears 

twice in the model because subjects did not know whether they were reporting the target or a 

nontarget object on each trial. This also leads to the assumption that 𝜎1 = 𝜎4 = 𝜎𝑠 and 𝜎2 = 𝜎5 =

𝜎𝑟. The number of free parameters in the model thus reduces to seven. 

Assume also that errors (𝜀) are produced independently across trials. From this, the likelihood 

function can be written as: 

                                                                        L =  ∏ p(𝜀𝑖)
𝑁
𝑖=1  ,        (15) 

where N is the number of trials.  

2) The "M step" is to find the optimal values for the parameters in the model, which are ones that 

maximize the L function.  

To do that, we first take the logarithm of L: 

  ln(L) = ln(∏ p(𝜀𝑖)
𝑁
𝑖=1 ) =  ∑ ln[p(𝜀𝑖)]

𝑁
𝑖=1 = ∑ ln [𝑤1. ∑ G1

𝑗+1
𝑗=−1 + 𝑤2. ∑ G2

𝑗
++1

𝑗=−1
𝑁
𝑖=1 𝑤3. U +

 𝑤4. ∑ G4
𝑗+1

𝑗=−1 + 𝑤5. ∑ G5
𝑗+1 

𝑗=−1 ]  ,     (16) 

 

                                                           

6
 The model of this form can be considered as a generalization for all of our hypothetical models (see models SP3c_SR 

and SP3r_SR in the Smooth-Pursuit Condition Models section). Note that, for simplification, we did not include the 

summation operators to represent wrapped Gaussians in those models.  
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where: 

G1
𝑗
= 1

𝜎𝑠√2𝜋
e
−

(𝜀𝑖−𝜇𝑠−𝑗2𝜋)
2

2𝜎𝑠
2

                           G2
𝑗
= 1

𝜎𝑟√2𝜋
e
−

(𝜀𝑖−𝜇𝑟−𝛽𝑖−𝑗2𝜋)
2

2𝜎𝑟
2

      

G4
𝑗
= 1

𝜎𝑠√2𝜋
e
−

(𝜀𝑖−𝜇𝑠−𝑑𝑖−𝑗2𝜋)2

2𝜎𝑠
2

                        G5
𝑗
= 1

𝜎𝑟√2𝜋
e
−

(𝜀𝑖−𝜇𝑟−𝑑𝑖−𝛽𝑖
′−𝑗2𝜋)2

2𝜎𝑟
2

 

 

(with j = -1, 0, 1). For simplicity, we have dropped in Equation 16 the arguments of the Gaussian 

and uniform distributions, reduced the number of Gaussians of each component to three (for the 

reasons provided under Data analysis and in the first section of Supplementary Material, above), and 

used the subscripts of the Gaussians to distinguish the different components of the model.  

The function ln(L) is then evaluated by using Jensen's inequality 
7
: 

ln(L) ≥

∑ {𝑁
𝑖=1  ∑ p0(G1

𝑗
|𝜀𝑖). ln (

𝑤1.G1
𝑗

p0(G1
𝑗
|𝜀𝑖)

)+1
𝑗=−1 + ∑ p0(G2

𝑗
|𝜀𝑖). ln (

𝑤2.G2
𝑗

p0(G2
𝑗
|𝜀𝑖)

)+1
𝑗=−1  + p0(U|𝜀𝑖). ln(

𝑤3.U

p0(U|𝜀𝑖)
) +

 + ∑ p0(G4
𝑗
|𝜀𝑖). ln (

𝑤4.G4
𝑗

p0(G4
𝑗
|𝜀𝑖)

)+1
𝑗=−1 + ∑ p0(G5

𝑗
|𝜀𝑖). ln (

𝑤5.G5
𝑗

p0(G5
𝑗
|𝜀𝑖)

)+1
𝑗=−1  } ,    (17) 

where p0(G1
𝑗
|𝜀𝑖),  p

0(G2
𝑗
|𝜀𝑖), p

0(U|𝜀𝑖), p
0(G4

𝑗
|𝜀𝑖), p

0(G5
𝑗
|𝜀𝑖) represent the probabilities that a data 

point is most likely to be captured by the first Gaussian, the second Gaussian, the Uniform, the third 

Gaussian, and the fourth Gaussian distributions in the model, respectively, given its value 𝜀𝑖 . Note 

that the superscript ‘0’ indicates the "current" status of the parameters, which has sneaked in the 

inequality in the form of conditional probability. From Bayes’ theorem, we have: 

p0(G1
𝑗
|𝜀𝑖) =

𝑤1
0.G(𝜀𝑖;𝜇𝑠

0+𝑗2𝜋,𝜎𝑠
0)

p0(𝜀𝑖)
                 p0(G2

𝑗
|𝜀𝑖) =

𝑤1
0.G(𝜀𝑖;𝜇𝑟

0+𝛽𝑖+𝑗2𝜋,𝜎𝑟
0)

p0(𝜀𝑖)
  

p0(U|𝜀𝑖) =
𝑤3

0.U

p0(𝜀𝑖)
                          

p0(G4
𝑗
|𝜀𝑖) =

𝑤1
0.G(𝜀𝑖;𝜇𝑠

0+𝑑𝑖+𝑗2𝜋,𝜎𝑠
0)

p0(𝜀𝑖)
            p0(G5

𝑗
|𝜀𝑖) =

𝑤1
0.G(𝜀𝑖;𝜇𝑟

0+𝑑𝑖+𝛽𝑖
′+𝑗2𝜋,𝜎𝑟

0)

p0(𝜀𝑖)
  

The right hand side of (Eq.17) is the lower bound of ln (𝐿), so we want to maximize its value. The 

inequality can be rewritten as: 

  ln(𝐿) ≥

∑ {𝑛
𝑖=0  ∑ p0(G1

𝑗
|𝜀𝑖). ln (𝑤1. G1

𝑗
)+1

𝑗=−1 + ∑ p0(G2
𝑗
|𝜀𝑖). ln (𝑤2. G2

𝑗
)+1

𝑗=−1 + p0(U|𝜀𝑖). ln(𝑤3. U)  +

                                                           
7
 Jensen's inequality: ln (∑ 𝑐𝑗) =𝑇

𝑗=1  ln (∑
𝑐𝑗

𝑝𝑗
. 𝑝𝑗) ≥𝑇

𝑗=1 ∑ 𝑝𝑗 . ln (
𝑐𝑗

𝑝𝑗
)𝑇

𝑗=1  
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 ∑ p0(G4
𝑗
|𝜀𝑖). ln (𝑤4. G1

𝑗
)+1

𝑗=−1  +  ∑ p0(G5
𝑗
|𝜀𝑖). ln (𝑤5. G5

𝑗
)+1

𝑗=−1  }  - 

∑ {𝑛
𝑖=0  ∑ p0(G1

𝑗
|𝜀𝑖). ln (p0(G1

𝑗
|𝜀𝑖))

+1
𝑗=−1 + ∑ p0(G2

𝑗
|𝜀𝑖). ln (p0(G2

𝑗
|𝜀𝑖))

+1
𝑗=−1 +

p0(U|𝜀𝑖). ln(p0(U|𝜀𝑖))  +  ∑ p0(G4
𝑗
|𝜀𝑖). ln (p0(G4

𝑗
|𝜀𝑖))

+1
𝑗=−1  +  ∑ p0(G5

𝑗
|𝜀𝑖). ln (p0(G5

𝑗
|𝜀𝑖))

+1
𝑗=−1  } ,      

 (18) 

Because the second summation is a constant, the problem boils down to finding the new values for 

the parameters that maximize the first summation (S): 

 𝑆 = ∑ {𝑛
𝑖=0  ∑ p0(G1

𝑗
|𝜀𝑖). ln (𝑤1. G1

𝑗
)+1

𝑗=−1 + ∑ p0(G2
𝑗
|𝜀𝑖). ln (𝑤2. G2

𝑗
)+1

𝑗=−1 + p0(U|𝜀𝑖). ln(𝑤3. U)  +

 ∑ p0(G4
𝑗
|𝜀𝑖). ln (𝑤4. G1

𝑗
)+1

𝑗=−1  +  ∑ p0(G5
𝑗
|𝜀𝑖). ln (𝑤5. G5

𝑗
)+1

𝑗=−1  }  ,   (19) 

We do so by taking partial derivatives of S with respect to each parameter, setting each derivative 

equal to zero, and solving the equations
8
. The results are (note that the superscript '1' indicates the 

"updated" values for the parameters): 

𝜇𝑠
1 = ∑ { 𝜀𝑖. (∑ p0(G1

𝑗
|𝜀𝑖)

+1
𝑗=−1 + ∑ p0(G4

𝑗
|𝜀𝑖)

+1
𝑗=−1 )  +  2𝜋. (p0(G1

−1|𝜀𝑖) − p0(G1
1|𝜀𝑖) +𝑁

𝑖=1

p0(G4
−1|𝜀𝑖) − p0(G4

1|𝜀𝑖)) – 𝑑𝑖. ∑ p0(G4
𝑗
|𝜀𝑖)

+1
𝑗=−1 } ÷ ∑ {∑ p0(G1

𝑗
|𝜀𝑖)

+1
𝑗=−1 + ∑ p0(G4

𝑗
|𝜀𝑖)

+1
𝑗=−1 }𝑁

𝑖=1     

𝜇𝑟
1 = ∑ { 𝜀𝑖. (∑ p0(G2

𝑗
|𝜀𝑖)

+1
𝑗=−1 + ∑ p0(G5

𝑗
|𝜀𝑖)

+1
𝑗=−1 )  +  2𝜋. (p0(G2

−1|𝜀𝑖) − p0(G2
1|𝜀𝑖) +𝑁

𝑖=1

p0(G5
−1|𝜀𝑖) − p0(G5

1|𝜀𝑖))  −  𝛽𝑖. ∑ p0(G2
𝑗
|𝜀𝑖)

+1
𝑗=−1 − (𝑑𝑖 + 𝛽𝑖

′). ∑ p0(G5
𝑗
|𝜀𝑖)

+1
𝑗=−1 }   ÷

  ∑ {∑ p0(G2
𝑗
|𝜀𝑖)

+1
𝑗=−1 + ∑ p0(G5

𝑗
|𝜀𝑖)

+1
𝑗=−1 }𝑁

𝑖=1   

𝜎𝑠
1 = [∑ {∑ p0(G1

𝑗
|𝜀𝑖)

+1
𝑗=−1 . (𝜀𝑖 − 𝜇𝑠

1 − 𝑗2𝜋)2 + ∑ p0(G4
𝑗
|𝜀𝑖)

+1
𝑗=−1 . (𝜀𝑖 − 𝜇𝑠

1 − 𝑑𝑖 − 𝑗2𝜋)2}𝑁
𝑖=1 ]

1/2
  ÷

 [∑ {∑ p0(G1
𝑗
|𝜀𝑖)

+1
𝑗=−1 + ∑ p0(G4

𝑗
|𝜀𝑖)

+1
𝑗=−1 }𝑁

𝑖=1 ]
1/2

     

𝜎𝑟
1 = [∑ {∑ p0(G2

𝑗
|𝜀𝑖)

+1
𝑗=−1 . (𝜀𝑖 − 𝜇𝑠

1 − 𝛽𝑖 − 𝑗2𝜋)2 + ∑ p0(G5
𝑗
|𝜀𝑖)

+1
𝑗=−1 . (𝜀𝑖 − 𝜇𝑠

1 − 𝑑𝑖 − 𝛽𝑖
′ −𝑁

𝑖=1

𝑗2𝜋)2}]
1/2

  ÷  [∑ {∑ p0(G2
𝑗
|𝜀𝑖)

+1
𝑗=−1 + ∑ p0(G5

𝑗
|𝜀𝑖)

+1
𝑗=−1 }𝑁

𝑖=1 ]
1/2

     

𝑤1
1 = 𝑤𝑠

1 =
1

𝑁
∑ ∑ p0(G1

𝑗
|𝜀𝑖)

+1
𝑗=−1

𝑁
𝑖=1                        𝑤2

1 = 𝑤𝑟
1 =

1

𝑁
∑ ∑ p0(G2

𝑗
|𝜀𝑖)

+1
𝑗=−1

𝑁
𝑖=1            

𝑤3
1 = 𝑤U

1 =
1

𝑁
∑ 𝑝0(U|𝜀𝑖)

𝑁
𝑖=1          

𝑤4
1 =

𝑤1
1

𝑤1
1+𝑤2

1 . (1 − 𝑤1
1 − 𝑤2

1 − 𝑤3
1)                       𝑤5

1 =
𝑤2

1

𝑤1
1+𝑤2

1 . (1 − 𝑤1
1 − 𝑤2

1 − 𝑤3
1)              

with 𝑝𝑜(𝐺1|𝜀𝑖), 𝑝
𝑜(𝐺2|𝜀𝑖), and 𝑝𝑜(𝑈|𝜀𝑖) given by equations (Eq.11), (Eq.12), and (Eq.13). These 

"updated" values become the "current" values in the next iteration and the algorithm iterates these 

                                                           
8
  Here, the second order derivatives are found to be negative in all cases.  
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computations for the parameters until convergence to a certain local maximum of the likelihood 

function. 

 

3. Bayesian-model comparison 

We used penalized likelihood criteria of the Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) for model selection. The AIC and BIC for a model are defined as: 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑝 , (20) 

𝐵𝐼𝐶 =  −2 ln(𝐿) + 𝑝𝑙𝑛(𝑛), (21) 

where L represents the maximized value of the likelihood function of the model (obtained from the 

EM algorithm), p is the number of free parameters in the model, and n is sample size. These two 

criteria try to balance a good fit with the parsimony of a model. Given a set of models, the selected 

model is the one with minimum AIC or BIC values. If two models yield AIC or BIC values that are 

insignificantly different from each other, the model with fewer parameters is preferred according to 

Occam’s razor.  

  

4. Bayesian results 

Model selection 

Comparisons of AIC values result in the same winning models as in the Least Squares method. In the 

fixation condition, the three models F2, F3c, and F3r have equivalent performance, which is 

significantly better than that of model F1. In the SPEM condition, performance is equivalent for the 

SP2_*, SP3c_*, and SP3r_* groups, which is significantly better than the SP1 group. Equivalent 

performance was also found for the spatiotopic (*_S) and combined (*_SR) groups, which is 

significantly better than that of the retinotopic (*_R) group. Comparisons of BIC values additionally 

show that model F2 performs significantly better than models F3c and F3r, and the SP2_* group 

performs significantly better than the groups SP3c_* and SP3r_*. Combined, the models F2 and 

SP2_S are selected, the same as when using the Least Squares method. 

Parameter estimation 

Estimates of intake and precision parameters by Bayesian analysis are shown in figures S1 

(experiments 1a and 2a) and S2 (experiments 1b and 2b). 

-----  insert Figures S1 and S2 here  ----- 
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5. Actual vs theoretical eye movements

The pursuit system is not perfect in that the eye is in general not perfectly aligned with the pursuit 

target and may be slightly lagging behind or running ahead. To ensure accuracy and to take into 

account the actual proximal stimulus, our approach for the decomposition of spatiotopic and 

retinotopic components shown in Figure 4 was therefore performed based on the actual eye-velocity 

vector instead of that of the pursuit target. However, to ensure that the noise introduced by the pursuit 

system did not fundamentally influence our analyses and conclusions, we have also carried out the 

decomposition based on theoretical eye movements (i.e., the velocity of the pursuit target). Figure S3 

shows a comparison of results for individual observers computed by using the actual (upper panels; 

data replotted from Fig. 9) and the theoretical eye movements (lower panels). The inspection of the 

figure shows that the results are similar and the same trend is observed for the data averaged across 

the observers (Table S1). 

-----  insert Figure S3 here  ----- 

-----  insert Table S1 here  ----- 
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Figure and Table Legends 

Figure 1. Time course of a trial in the fixation condition: Experiments 1a (varying set size; no cue 

delay) and 1b (set size fixed; varying cue delay).  

Figure 2. Illustration of the step-ramp paradigm: changes of the pursuit target and eye position along 

the pursuit direction as a function of time.  

Figure 3. Time course of a trial in the smooth pursuit eye movement (SPEM) condition: 

Experiments 2a (varying set size; no cue delay) and 2b (set size fixed; varying cue delay). The gray 

central dot, dashed circle, and dashed arrows are shown for illustration purposes only; they are 

invisible during the experiments. 

Figure 4. Decomposition of spatiotopic and retinotopic motion vectors: 𝑣𝑠⃗⃗  ⃗, 𝑣𝑟⃗⃗  ⃗, and 𝑣𝑝⃗⃗⃗⃗  represent the 

velocity of the target object with respect to the screen (spatiotopic vector), velocity of the target 

object with respect to the projected fovea (retinotopic vector), and pursuit (eye) velocity, 

respectively. Spatiotopic error is measured as the angular deviation between the reported and the 

spatiotopic vectors. Retinotopic error is measured as the angular deviation between the reported and 

the retinotopic vectors. 

Figure 5. Two-dimensional gaze traces on example SPEM trials (observer TAN, Experiment 2a) 

shown in different colors within the 10x10-deg central area of the screen. The 3-deg, 4-deg, and 1-

deg gray circles represent the initial fixation, jump-back, and terminal positions of the pursuit target, 

respectively. The central cross marks the center of the screen. 

Figure 6. Eye position (colored lines; 7 trials in Experiment 2a, observer TAN) shown with the 

pursuit target’s position (black solid line) along the pursuit direction as a function of time. The 0-deg 

position represents the center of the display. The shaded area represents the critical time window 

within which pursuit gain must fall in the specified range, and no saccades and blinks are allowed (See 

also figure 2). 

Figure 7. Eye velocity data for an example SPEM trial (observer TAN, Experiment 2a): raw velocity 

(green) and low-pass filtered (blue) data. The black line represents the average of filtered traces 

obtained from 100 randomly selected trials (observer TAN, Experiment 2a). The shaded area shows 

the constrained range for averaged velocity in the critical pursuit interval. 
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Figure 8. Data for individual observers in Experiments 1a (fixation; left panel) and 2a (SPEM; right 

panel): Transformed performance (left y-axes) and error magnitude (right y-axes) plotted as a 

function of set size. SPEM performance in the right panel was measured in spatiotopic coordinates. 

Error bars correspond to ±1 standard error of the mean. 

Figure 9. Data for individual observers in Experiment 2a (SPEM). Left panel: SPEM transformed 

performance (left y-axes) and error magnitude (right y-axes) measured in retinotopic coordinates as 

a function of set size. Right panel: same as left panel expressed with respect to spatiotopic 

performance, under the assumption that spatiotopic performance is perfect (zero spatiotopic errors). 

Error bars correspond to ±1 standard error of the mean. 

Figure 10. Average data in Experiments 1a (fixation) and 2a (SPEM): Transformed performance 

(left y-axis) and error magnitude (right y-axis) averaged across observers as a function of set size for 

3 cases: Fixation (red), SPEM spatiotopic (green), SPEM retinotopic (blue). Error bars correspond to 

±1 standard error of the mean. 

Figure 11. Data for individual observers in Experiments 1b (fixation; left panel) and 2b (SPEM; 

center and right panels): Transformed performance (left y-axes) and error magnitude (right y-axes) 

plotted as a function of cue-delay. Performance during SPEM in the center and right panels was 

measured in spatiotopic and retinotopic coordinates, respectively. Error bars correspond to ±1 

standard error of the mean. 

Figure 12. Average data in Experiments 1b (fixation) and 2b (SPEM): Transformed performance 

(left y-axis) and error magnitude (right y-axis) averaged across observers as a function of cue delay 

for 3 cases: Fixation (red), SPEM spatiotopic (green), SPEM retinotopic (blue). Error bars 

correspond to ±1 standard error of the mean. 

Figure 13. Decomposition of performance in Experiments 1a (fixation; left column) and 2a (SPEM; 

right column): Intake along with guess rate (upper row) and precision (lower row), averaged across 

observers, are shown as a function of set size. Data are shown for only the winning model in each 

condition (see top of each panel). Error bars correspond to ±1 standard error of the mean. 

Figure 14. Decomposition of performance in Experiments 1b (fixation; left column) and 2b (SPEM; 

right column): Intake (upper row) and precision (lower row), averaged across observers, are shown 

as a function of cue delay. Data are shown for only the winning model in each condition (see top of 

each panel). Error bars correspond to ±1 standard error of the mean. Data for a set size of 1, shown 
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only at cue delay = 0 s, are taken from Experiment 1. Horizontal lines are to indicate that 

performance in this condition is largely independent of cue delay. 

Figure S1. Same as Figure 13 but with data obtained from Bayesian Analysis. 

Figure S2. Same as Figure 14 but with data obtained from Bayesian Analysis. 

Figure S3. Comparison of results obtained by using the actual eye movement (upper panels; replot 

of Figure 9) with those obtained by using the theoretical eye movement (i.e., by using the pursuit 

target velocity) for individual observer data. Overall, similar results are obtained, as is the case for 

the data averaged across the observers (Table S1). 

Table 1. Mean adjusted-R
2
 values, obtained from the Least-Squares fitting method, for different

models and conditions. 

Table S1. Comparison of results obtained by using the actual eye movement (Fig. 10, blue line) with 

those obtained by using the theoretical eye movement for data averaged across observers.  
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DECOMPOSITION BASED ON THEORETICAL EYE VELOCITY 



Table 1 



Table S1 

Set Size 1 3 4 6 8 9 12 

Actual eye 
movement 

0.7937 0.7607 0.7351 0.6973 0.6482 0.6313 0.6086 

Theoretical 
eye 
movement 

0.7936 0.7667 0.7363 0.6916 0.6491 0.6334 0.6083 
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