560 research outputs found
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of ∼10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates ⪆100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index ≲2
Recommended from our members
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational
waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model
(HMM) to track spin wandering. This search improves on previous HMM-based
searches of LIGO data by using an improved frequency domain matched filter, the
-statistic, and by analysing data from Advanced LIGO's second
observing run. In the frequency range searched, from to
, we find no evidence of gravitational radiation. At
, the most sensitive search frequency, we report an upper
limit on gravitational wave strain (at 95\% confidence) of when marginalising over source inclination angle. This is the
most sensitive search for Scorpius X-1, to date, that is specifically designed
to be robust in the presence of spin wandering
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Keratinocyte growth factor in acute lung injury to reduce pulmonary dysfunction – a randomised placebo-controlled trial (KARE): study protocol
Abstract Background Acute lung injury is a common, devastating clinical syndrome associated with substantial mortality and morbidity with currently no proven therapeutic interventional strategy to improve patient outcomes. The objectives of this study are to test the potential therapeutic effects of keratinocyte growth factor for patients with acute lung injury on oxygenation and biological indicators of acute inflammation, lung epithelial and endothelial function, protease:antiprotease balance, and lung extracellular matrix degradation and turnover. Methods/design This will be a prospective, randomised, double-blind, allocation-concealed, placebo-controlled, phase 2, multicentre trial. Randomisation will be stratified by presence of severe sepsis requiring vasopressors. Patients in an ICU fulfilling the American–European Consensus Conference Definition of acute lung injury will be randomised in a 1:1 ratio to receive an intravenous bolus of either keratinocyte growth factor (palifermin, 60 μg/kg) or placebo (0.9% sodium chloride solution) daily for a maximum of 6 days. The primary endpoint of this clinical study is to evaluate the efficacy of palifermin to improve the oxygenation index at day 7 or the last available oxygenation index prior to patient discontinuation from the study.A formal statistical analysis plan has been constructed. Analyses will be carried out on an intention-to-treat basis. A single analysis is planned at the end of the trial. P = 0.05 will be considered statistically significant and all tests will be two-sided. For continuously distributed outcomes, differences between groups will be tested using independent-sample t tests, analysis of variance and analysis of covariance with transformation of variables to normality or nonparametric equivalents. The trial will be reported in line with the Consolidated Standards of Reporting Trials (Consort 2010 guidelines). Trial registration http://ISRCTN9569067
Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation
Chronic wound fluids have elevated concentration of human neutrophil elastase (HNE) which can be used as inflammation/infection marker. Our goal is to develop functional materials for fast diagnosis of wound inflammation/infection by using HNE as a specific marker. For that, fluorogenic peptides with a HNE-specific cleavage sequence were incorporated into traditional textile dressings, to allow real-time detection of the wound status. Two different fluorogenic approaches were studied in terms of intensity of the signal generated upon HNE addition: a fluorophore 7-amino-4-trifluormethylcoumarin (AFC) conjugated to a HNE-specific peptide and two fluorophore/quencher pairs (FAM/Dabcyl and EDANS/Dabcyl) coupled to a similar peptide as a Förster resonance energy transfer (FRET) strategy. Also, two immobilization methods were tested: sonochemistry immobilization onto a cotton bandage and glutaraldehyde (GTA)-assisted chemical crosslinking onto a polyamide dressing. The immobilized fluorogenic AFC peptide showed an intense fluorescence emission in the presence of HNE. HNE also induced an enhanced fluorescent signal with the EDANS/Dabcyl FRET peptide which showed to be a more sensitive and effective strategy than the AFC peptide. However, its chemical immobilization onto the polyamide dressing greatly decreased its detection, mainly due to the more difficult access of the enzyme to the cleavage sequence of the immobilized peptide. After optimization of the in situ immobilization, it will be possible to use these fluorescence-functionalized dressings for an effective and specific monitoring of chronic wounds by simply using a portable ultraviolet (UV) light source. We envision that the development of this point-of-care medical device for wound control will have a great impact on patients life quality and reduction of costs on health care system.This study was funded by the European project InFact-Functional materials for fast diagnosis of wound infection (FP7-NMP-2013-SME-7-grant agreement no. 604278). The work done at Centre of Biological Engineering (CEB) was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte 2020-Programa Operacional Regional do Norte
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
- …
