124 research outputs found

    Consequences of t-channel unitarity for the interaction of real and virtual photons at high energies

    Get PDF
    We analyze the consequences of t-channel unitarity for photon cross sections and show what assumptions are necessary to allow for the existence of new singularities at Q2=0 Q^{2}=0 for the γp \gamma p and γγ \gamma \gamma total cross sections. For virtual photons, such singularities can in general be present, but we show that, apart from the perturbative singularity associated with γγqqˉ \gamma ^{*}\gamma ^{*}\to q\bar q , no new ingredient is needed to reproduce the data from LEP and HERA, in the Regge region.Comment: 10 pages, LaTeX2e with kluwer.sty, 7 figures. Talk presented at the Second International "Cetraro" Workshop & NATO Advanced Research Workshop "Diffraction 2002", Alushta, Crimea, Ukraine, August 31 - September 6, 200

    Central Exclusive Production in QCD

    Get PDF
    We investigate the theoretical description of the central exclusive production process, h1+h2 -> h1+X+h2. Taking Higgs production as an example, we sum logarithmically enhanced corrections appearing in the perturbation series to all orders in the strong coupling. Our results agree with those originally presented by Khoze, Martin and Ryskin except that the scale appearing in the Sudakov factor, mu=0.62 \sqrt{\hat{s}}, should be replaced with mu=\sqrt{\hat{s}}, where \sqrt{\hat{s}} is the invariant mass of the centrally produced system. We confirm this result using a fixed-order calculation and show that the replacement leads to approximately a factor 2 suppression in the cross-section for central system masses in the range 100-500 GeV.Comment: 41 pages, 19 figures; minor typos fixed; version published in JHE

    Total Hadronic Cross Section Data and the Froissart-Martin Bound

    Full text link
    The energy dependence of the total hadronic cross section at high energies is investigated with focus on the recent experimental result by the TOTEM Collaboration at 7 TeV and the Froissart-Martin bound. On the basis of a class of analytical parametrization with the exponent γ\gamma in the leading logarithm contribution as a free parameter, different variants of fits to pppp and pˉp\bar{p}p total cross section data above 5 GeV are developed. Two ensembles are considered, the first comprising data up to 1.8 TeV, the second also including the data collected at 7 TeV. We shown that in all fit variants applied to the first ensemble the exponent is statistically consistent with γ\gamma = 2. Applied to the second ensemble, however, the same variants yield γ\gamma's above 2, a result already obtained in two other analysis, by U. Amaldi \textit{et al}. and by the UA4/2 Collaboration. As recently discussed by Ya. I. Azimov, this faster-than-squared-logarithm rise does not necessarily violate unitarity. Our results suggest that the energy dependence of the hadronic total cross section at high energies still constitute an open problem.Comment: 20 pages, 10 figures, introduction extended and general references added to match editorial style, to appear in the Brazilian Journal of Physic

    HERA Collider Physics

    Get PDF
    HERA, the first electron-proton collider, has been delivering luminosity since 1992. It is the natural extension of an impressive series of fixed-target lepton-nucleon scattering experiments. The increase of a factor ten in center-of-mass energy over that available for fixed-target experiments has allowed the discovery of several important results, such as the large number of slow partons in the proton, and the sizeable diffractive cross section at large Q2Q^2. Recent data point to a possible deviation from Standard Model expectations at very high Q2Q^2, highlighting the physics potential of HERA for new effects. The HERA program is currently in a transition period. The first six years of data taking have primarily elucidated the structure of the proton, allowed detailed QCD studies and had a strong impact on the understanding of QCD dynamics. The coming years will bring the era of electroweak studies and high Q2Q^2 measurements. This is therefore an appropriate juncture at which to review HERA results.Comment: 351 pages, 154 figures, submitted to Reviews of Modern Physic

    GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses

    Get PDF
    We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO’s and Virgo’s third observing run. The signal was recorded on April 12, 2019 at 05∶30∶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: a ∼30 M_⊙ black hole merged with a ∼8 M_⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein’s general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs

    GW190521 : a binary black hole merger with a total mass of 150 M⊙

    Get PDF
    On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85+21−14  M⊙ and 66+17−18  M⊙ (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65  M⊙. We calculate the mass of the remnant to be 142+28−16  M⊙, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3+2.4−2.6  Gpc, corresponding to a redshift of 0.82+0.28−0.34. The inferred rate of mergers similar to GW190521 is 0.13+0.30−0.11  Gpc−3 yr−1
    corecore