229 research outputs found
Tactile Interactions with a Humanoid Robot : Novel Play Scenario Implementations with Children with Autism
Acknowledgments: This work has been partially supported by the European Commission under contract number FP7-231500-ROBOSKIN. Open Access: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.The work presented in this paper was part of our investigation in the ROBOSKIN project. The project has developed new robot capabilities based on the tactile feedback provided by novel robotic skin, with the aim to provide cognitive mechanisms to improve human-robot interaction capabilities. This article presents two novel tactile play scenarios developed for robot-assisted play for children with autism. The play scenarios were developed against specific educational and therapeutic objectives that were discussed with teachers and therapists. These objectives were classified with reference to the ICF-CY, the International Classification of Functioning – version for Children and Youth. The article presents a detailed description of the play scenarios, and case study examples of their implementation in HRI studies with children with autism and the humanoid robot KASPAR.Peer reviewedFinal Published versio
Very Cold Gas and Dark Matter
We have recently proposed a new candidate for baryonic dark matter: very cold
molecular gas, in near-isothermal equilibrium with the cosmic background
radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed
in a fractal structure, resembling the hierarchical structure of the detected
interstellar medium.
We present some perspectives of detecting this very cold gas, either directly
or indirectly. The H molecule has an "ultrafine" structure, due to the
interaction between the rotation-induced magnetic moment and the nuclear spins.
But the lines fall in the km domain, and are very weak. The best opportunity
might be the UV absorption of H in front of quasars. The unexpected cold
dust component, revealed by the COBE/FIRAS submillimetric results, could also
be due to this very cold H gas, through collision-induced radiation, or
solid H grains or snowflakes. The -ray distribution, much more
radially extended than the supernovae at the origin of cosmic rays
acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded
compressed tar file. To be published in the proceeedings of the
"Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block
(ed.), (Kluwer Dordrecht
Eta Carinae -- Physics of the Inner Ejecta
Eta Carinae's inner ejecta are dominated observationally by the bright
Weigelt blobs and their famously rich spectra of nebular emission and
absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000
to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0)
gas. Located within 1000 AU of the central star, they contain heavily
CNO-processed material that was ejected from the star about a century ago.
Outside the blobs, the inner ejecta include absorption-line clouds with similar
conditions, plus emission-line gas that has generally lower densities and a
wider range of speeds (reaching a few hundred km/s) compared to the blobs. The
blobs appear to contain a negligible amount of dust and have a nearly dust-free
view of the central source, but our view across the inner ejecta is severely
affected by uncertain amounts of dust having a patchy distribution in the
foreground. Emission lines from the inner ejecta are powered by photoionization
and fluorescent processes. The variable nature of this emission, occurring in a
5.54 yr event cycle, requires specific changes to the incident flux that hold
important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova
Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe
X-ray Absorption and Reflection in Active Galactic Nuclei
X-ray spectroscopy offers an opportunity to study the complex mixture of
emitting and absorbing components in the circumnuclear regions of active
galactic nuclei, and to learn about the accretion process that fuels AGN and
the feedback of material to their host galaxies. We describe the spectral
signatures that may be studied and review the X-ray spectra and spectral
variability of active galaxies, concentrating on progress from recent Chandra,
XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for
absorption covering a wide range of column densities, ionization and dynamics,
and discuss the growing evidence for partial-covering absorption from data at
energies > 10 keV. Such absorption can also explain the observed X-ray spectral
curvature and variability in AGN at lower energies and is likely an important
factor in shaping the observed properties of this class of source.
Consideration of self-consistent models for local AGN indicates that X-ray
spectra likely comprise a combination of absorption and reflection effects from
material originating within a few light days of the black hole as well as on
larger scales. It is likely that AGN X-ray spectra may be strongly affected by
the presence of disk-wind outflows that are expected in systems with high
accretion rates, and we describe models that attempt to predict the effects of
radiative transfer through such winds, and discuss the prospects for new data
to test and address these ideas.Comment: Accepted for publication in the Astronomy and Astrophysics Review. 58
pages, 9 figures. V2 has fixed an error in footnote
Intensive disc-reverberation mapping of Fairall 9: 1st year of Swift & LCO monitoring
We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to sub-daily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable component's spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable ( days) component with an opposite lag to the reverberation signal
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly
Repeated PTZ Treatment at 25-Day Intervals Leads to a Highly Efficient Accumulation of Doublecortin in the Dorsal Hippocampus of Rats
BACKGROUND: Neurogenesis persists throughout life in the adult mammalian brain. Because neurogenesis can only be assessed in postmortem tissue, its functional significance remains undetermined, and identifying an in vivo correlate of neurogenesis has become an important goal. By studying pentylenetetrazole-induced brain stimulation in a rat model of kindling we accidentally discovered that 25±1 days periodic stimulation of Sprague-Dawley rats led to a highly efficient increase in seizure susceptibility. METHODOLOGY/PRINCIPAL FINDINGS: By EEG, RT-PCR, western blotting and immunohistochemistry, we show that repeated convulsive seizures with a periodicity of 25±1 days led to an enrichment of newly generated neurons, that were BrdU-positive in the dentate gyrus at day 25±1 post-seizure. At the same time, there was a massive increase in the number of neurons expressing the migratory marker, doublecortin, at the boundary between the granule cell layer and the polymorphic layer in the dorsal hippocampus. Some of these migrating neurons were also positive for NeuN, a marker for adult neurons. CONCLUSION/SIGNIFICANCE: Our results suggest that the increased susceptibility to seizure at day 25±1 post-treatment is coincident with a critical time required for newborn neurons to differentiate and integrate into the existing hippocampal network, and outlines the importance of the dorsal hippocampus for seizure-related neurogenesis. This model can be used as an in vivo correlate of neurogenesis to study basic questions related to neurogenesis and to the neurogenic mechanisms that contribute to the development of epilepsy
Stress-induced lipocalin-2 controls dendritic spine formation and neuronal activity in the amygdala.
This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Behavioural adaptation to psychological stress is dependent on neuronal plasticity and dysfunction at this cellular level may underlie the pathogenesis of affective disorders such as depression and post-traumatic stress disorder. Taking advantage of genome-wide microarray assay, we performed detailed studies of stress-affected transcripts in the amygdala - an area which forms part of the innate fear circuit in mammals. Having previously demonstrated the role of lipocalin-2 (Lcn-2) in promoting stress-induced changes in dendritic spine morphology/function and neuronal excitability in the mouse hippocampus, we show here that the Lcn-2 gene is one of the most highly upregulated transcripts detected by microarray analysis in the amygdala after acute restraint-induced psychological stress. This is associated with increased Lcn-2 protein synthesis, which is found on immunohistochemistry to be predominantly localised to neurons. Stress-naïve Lcn-2(-/-) mice show a higher spine density in the basolateral amygdala and a 2-fold higher rate of neuronal firing rate compared to wild-type mice. Unlike their wild-type counterparts, Lcn-2(-/-) mice did not show an increase in dendritic spine density in response to stress but did show a distinct pattern of spine morphology. Thus, amygdala-specific neuronal responses to Lcn-2 may represent a mechanism for behavioural adaptation to psychological stress.Marie Curie Excellence Grant from the European Commission.Medical Research Council Project GrantCOST Action ECMNe
- …