We have recently proposed a new candidate for baryonic dark matter: very cold
molecular gas, in near-isothermal equilibrium with the cosmic background
radiation at 2.73 K. The cold gas, of quasi-primordial abundances, is condensed
in a fractal structure, resembling the hierarchical structure of the detected
interstellar medium.
We present some perspectives of detecting this very cold gas, either directly
or indirectly. The H2 molecule has an "ultrafine" structure, due to the
interaction between the rotation-induced magnetic moment and the nuclear spins.
But the lines fall in the km domain, and are very weak. The best opportunity
might be the UV absorption of H2 in front of quasars. The unexpected cold
dust component, revealed by the COBE/FIRAS submillimetric results, could also
be due to this very cold H2 gas, through collision-induced radiation, or
solid H2 grains or snowflakes. The γ-ray distribution, much more
radially extended than the supernovae at the origin of cosmic rays
acceleration, also points towards and extended gas distribution.Comment: 16 pages, Latex pages, crckapb macro, 3 postscript figures, uuencoded
compressed tar file. To be published in the proceeedings of the
"Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block
(ed.), (Kluwer Dordrecht