612 research outputs found
Sperm design and variation in the New World blackbirds (Icteridae)
Post-copulatory sexual selection (PCSS) is thought to be one of the evolutionary forces responsible for the rapid and divergent evolution of sperm design. However, whereas in some taxa particular sperm traits are positively associated with PCSS, in other taxa, these relationships are negative, and the causes of these different patterns across taxa are poorly understood. In a comparative study using New World blackbirds (Icteridae), we tested whether sperm design was influenced by the level of PCSS and found significant positive associations with the level of PCSS for all sperm components but head length. Additionally, whereas the absolute length of sperm components increased, their variation declined with the intensity of PCSS, indicating stabilizing selection around an optimal sperm design. Given the diversity of, and strong selection on, sperm design, it seems likely that sperm phenotype may influence sperm velocity within species. However, in contrast to other recent studies of passerine birds, but consistent with several other studies, we found no significant link between sperm design and velocity, using four different species that vary both in sperm design and PCSS. Potential reasons for this discrepancy between studies are discussed
Neuromagnetic Evidence for Early Auditory Restoration of Fundamental Pitch
Background: Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset. Methodology: Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as ‘‘virtual pitch’’) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component. Principal Findings: We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies. Conclusions: Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived i
Influence of Weather Variables and Plant Communities on Grasshopper Density in the Southern Pampas, Argentina
A study was conducted to evaluate the influence of weather (precipitation and temperature) and plant communities on grasshopper density over a 14-year period (1996–2009) in Benito Juárez County, Southern Pampas, Argentina. Total density strongly varied among plant communities. Highest values were registered in 2001 and 2003 in highly disturbed pastures and in 2002 and 2009 in halophilous grasslands. Native grasslands had the lowest density values. Seasonal precipitation and temperature had no significant effect on total grasshopper density. Dichroplus elongatus (Giglio-Tos) (Orthoptera: Acridoidea), Covasacris pallidinota (Bruner), Dichroplus pratensis Bruner, Scotussa lemniscata Stål, Borellia bruneri (Rehn) and Dichroplus maculipennis (Blanchard) comprised, on average, 64% of the grasshopper assemblages during low density years and 79% during high density years. Dichroplus elongatus, S. lemniscata and C. pallidinota were the most abundant species in 2001, 2002 and 2003, while D. elongatus, B. brunneri and C.
pallidinota in 2009. Dichroplus elongatus and D. pratensis, mixed feeders species, were positively affected by summer rainfall. This suggests that the increase in summer precipitation had a positive effect on the quantity and quality forage production, affecting these grasshopper populations. Scotussa lemniscata and C. pallidinota were negatively affected by winter and fall temperature, possibly affecting the embryonic development before diapause and hatching. Dichroplus elongatus and D. pratensis were associated with highly disturbed pastures, S. lemniscata with pastures and B. bruneri and D. maculipennis with halophilous grasslands. Covasacris pallidinota was closely associated with halophilous grasslands and moderately disturbed pastures. Weather conditions changed over the years, with 2001, 2002 and 2003 having excessive rainfall while 2008 and 2009 were the driest years since the study started. We suggest that although seasonal precipitation and temperature had no significant effect on total grasshopper density, these weather variables and plant communities had differential influence on the dominant grasshopper species
Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update
This document is an update to the 2011 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2C9 and VKORC1 genotypes and warfarin dosing. Evidence from the published literature is presented for CYP2C9, VKORC1, CYP4F2, and rs12777823 genotype-guided warfarin dosing to achieve a target international normalized ratio of 2-3 when clinical genotype results are available. In addition, this updated guideline incorporates recommendations for adult and pediatric patients that are specific to continental ancestry
Thinking outside the curve, part I: modeling birthweight distribution
<p>Abstract</p> <p>Background</p> <p>Greater epidemiologic understanding of the relationships among fetal-infant mortality and its prognostic factors, including birthweight, could have vast public health implications. A key step toward that understanding is a realistic and tractable framework for analyzing birthweight distributions and fetal-infant mortality. The present paper is the first of a two-part series that introduces such a framework.</p> <p>Methods</p> <p>We propose describing a birthweight distribution via a normal mixture model in which the number of components is determined from the data using a model selection criterion rather than fixed <it>a priori</it>.</p> <p>Results</p> <p>We address a number of methodological issues, including how the number of components selected depends on the sample size, how the choice of model selection criterion influences the results, and how estimates of mixture model parameters based on multiple samples from the same population can be combined to produce confidence intervals. As an illustration, we find that a 4-component normal mixture model reasonably describes the birthweight distribution for a population of white singleton infants born to heavily smoking mothers. We also compare this 4-component normal mixture model to two competitors from the existing literature: a contaminated normal model and a 2-component normal mixture model. In a second illustration, we discover that a 6-component normal mixture model may be more appropriate than a 4-component normal mixture model for a general population of black singletons.</p> <p>Conclusions</p> <p>The framework developed in this paper avoids assuming the existence of an interval of birthweights over which there are no compromised pregnancies and does not constrain birthweights within compromised pregnancies to be normally distributed. Thus, the present framework can reveal heterogeneity in birthweight that is undetectable via a contaminated normal model or a 2-component normal mixture model.</p
Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition
Revealing the mechanisms for neuronal somatic diversification remains a central challenge for understanding individual differences in brain organization and function. Here we show that an engineered human LINE-1 (for long interspersed nuclear element-1; also known as L1) element can retrotranspose in neuronal precursors derived from rat hippocampus neural stem cells. The resulting retrotransposition events can alter the expression of neuronal genes, which, in turn, can influence neuronal cell fate in vitro. We further show that retrotransposition of a human L1 in transgenic mice results in neuronal somatic mosaicism. The molecular mechanism of action is probably mediated through Sox2, because a decrease in Sox2 expression during the early stages of neuronal differentiation is correlated with increases in both L1 transcription and retrotransposition. Our data therefore indicate that neuronal genomes might not be static, but some might be mosaic because of de novo L1 retrotransposition events.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62714/1/nature03663.pd
Sperm competition and the evolution of sperm design in mammals
<p>Abstract</p> <p>Background</p> <p>The influence of sperm competition upon sperm size has been a controversial issue during the last 20 years which remains unresolved for mammals. The hypothesis that, when ejaculates compete with rival males, an increase in sperm size would make sperm more competitive because it would increase sperm swimming speed, has generated contradictory results from both theoretical and empirical studies. In addition, the debate has extended to which sperm components should increase in size: the midpiece to accommodate more mitochondria and produce more energy to fuel motility, or the principal piece to generate greater propulsion forces.</p> <p>Results</p> <p>In this study we examined the influence of sperm competition upon sperm design in mammals using a much larger data set (226 species) than in previous analyses, and we corrected for phylogenetic effects by using a more complete and resolved phylogeny, and more robust phylogenetic control methods. Our results show that, as sperm competition increases, all sperm components increase in an integrated manner and sperm heads become more elongated. The increase in sperm length was found to be associated with enhanced swimming velocity, an adaptive trait under sperm competition.</p> <p>Conclusions</p> <p>We conclude that sperm competition has played an important role in the evolution of sperm design in mammals, and discuss why previous studies have failed to detect it.</p
Sexual selection protects against extinction
Reproduction through sex carries substantial costs, mainly because only half of sexual adults produce offspring. It has been theorised that these costs could be countered if sex allows sexual selection to clear the universal fitness constraint of mutation load. Under sexual selection, competition between (usually) males, and mate choice by (usually) females create important intraspecific filters for reproductive success, so that only a subset of males gains paternity. If reproductive success under sexual selection is dependent on individual condition, which depends on mutation load, then sexually selected filtering through ‘genic capture’ could offset the costs of sex because it provides genetic benefits to populations. Here, we test this theory experimentally by comparing whether populations with histories of strong versus weak sexual selection purge mutation load and resist extinction differently. After evolving replicate populations of the flour beetle Tribolium castaneum for ~7 years under conditions that differed solely in the strengths of sexual selection, we revealed mutation load using inbreeding. Lineages from populations that had previously experienced strong sexual selection were resilient to extinction and maintained fitness under inbreeding, with some families continuing to survive after 20 generations of sib × sib mating. By contrast, lineages derived from populations that experienced weak or non-existent sexual selection showed rapid fitness declines under inbreeding, and all were extinct after generation 10. Multiple mutations across the genome with individually small effects can be difficult to clear, yet sum to a significant fitness load; our findings reveal that sexual selection reduces this load, improving population viability in the face of genetic stress
- …