64 research outputs found

    Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models

    Get PDF
    Failure of remyelination of multiple sclerosis (MS) lesions contributes to neurodegeneration that correlates with chronic disability in patients. Currently, there are no available treatments to reduce neurodegeneration, but one therapeutic approach to fill this unmet need is to promote remyelination. As many demyelinated MS lesions contain plentiful oligodendrocyte precursor cells (OPCs), but no mature myelinating oligodendrocytes, research has previously concentrated on promoting OPC maturation. However, some MS lesions contain few OPCs, and therefore, remyelination failure may also be secondary to OPC recruitment failure. Here, in a series of MS samples, we determined how many lesions contained few OPCs, and correlated this to pathological subtype and expression of the chemotactic molecules Semaphorin (Sema) 3A and 3F. 37 % of MS lesions contained low numbers of OPCs, and these were mostly chronic active lesions, in which cells expressed Sema3A (chemorepellent). To test the hypothesis that differential Sema3 expression in demyelinated lesions alters OPC recruitment and the efficiency of subsequent remyelination, we used a focal myelinotoxic mouse model of demyelination. Adding recombinant (r)Sema3A (chemorepellent) to demyelinated lesions reduced OPC recruitment and remyelination, whereas the addition of rSema3F (chemoattractant), or use of transgenic mice with reduced Sema3A expression increased OPC recruitment and remyelination. We conclude that some MS lesions fail to remyelinate secondary to reduced OPC recruitment, and that chemotactic molecules are involved in the mechanism, providing a new group of drug targets to improve remyelination, with a specific target in the Sema3A receptor neuropilin-1. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-013-1112-y) contains supplementary material, which is available to authorized users

    The Cost of Male Aggression and Polygyny in California Sea Lions (Zalophus californianus)

    Get PDF
    In polygynous mating systems, males often increase their fecundity via aggressive defense of mates and/or resources necessary for successful mating. Here we show that both male and female reproductive behavior during the breeding season (June–August) affect female fecundity, a vital rate that is an important determinant of population growth rate and viability. By using 4 years of data on behavior and demography of California sea lions (Zalophus californianus), we found that male behavior and spatial dynamics—aggression and territory size—are significantly related to female fecundity. Higher rates of male aggression and larger territory sizes were associated with lower estimates of female fecundity within the same year. Female aggression was significantly and positively related to fecundity both within the same year as the behavior was measured and in the following year. These results indicate that while male aggression and defense of territories may increase male fecundity, such interactions may cause a reduction in the overall population growth rate by lowering female fecundity. Females may attempt to offset male-related reductions in female fecundity by increasing their own aggression—perhaps to defend pups from incidental injury or mortality. Thus in polygynous mating systems, male aggression may increase male fitness at the cost of female fitness and overall population viability

    Bivalent-Like Chromatin Markers Are Predictive for Transcription Start Site Distribution in Human

    Get PDF
    Deep sequencing of 5′ capped transcripts has revealed a variety of transcription initiation patterns, from narrow, focused promoters to wide, broad promoters. Attempts have already been made to model empirically classified patterns, but virtually no quantitative models for transcription initiation have been reported. Even though both genetic and epigenetic elements have been associated with such patterns, the organization of regulatory elements is largely unknown. Here, linear regression models were derived from a pool of regulatory elements, including genomic DNA features, nucleosome organization, and histone modifications, to predict the distribution of transcription start sites (TSS). Importantly, models including both active and repressive histone modification markers, e.g. H3K4me3 and H4K20me1, were consistently found to be much more predictive than models with only single-type histone modification markers, indicating the possibility of “bivalent-like” epigenetic control of transcription initiation. The nucleosome positions are proposed to be coded in the active component of such bivalent-like histone modification markers. Finally, we demonstrated that models trained on one cell type could successfully predict TSS distribution in other cell types, suggesting that these models may have a broader application range

    Quantifying unpredictability: A multiple-model approach based on satellite imagery data from Mediterranean ponds.

    Get PDF
    Fluctuations in environmental parameters are increasingly being recognized as essential features of any habitat. The quantification of whether environmental fluctuations are prevalently predictable or unpredictable is remarkably relevant to understanding the evolutionary responses of organisms. However, when characterizing the relevant features of natural habitats, ecologists typically face two problems: (1) gathering long-term data and (2) handling the hard-won data. This paper takes advantage of the free access to long-term recordings of remote sensing data (27 years, Landsat TM/ETM+) to assess a set of environmental models for estimating environmental predictability. The case study included 20 Mediterranean saline ponds and lakes, and the focal variable was the water-surface area. This study first aimed to produce a method for accurately estimating the water-surface area from satellite images. Saline ponds can develop salt-crusted areas that make it difficult to distinguish between soil and water. This challenge was addressed using a novel pipeline that combines band ratio water indices and the short near-infrared band as a salt filter. The study then extracted the predictable and unpredictable components of variation in the water-surface area. Two different approaches, each showing variations in the parameters, were used to obtain the stochastic variation around a regular pattern with the objective of dissecting the effect of assumptions on predictability estimations. The first approach, which is based on Colwell's predictability metrics, transforms the focal variable into a nominal one. The resulting discrete categories define the relevant variations in the water-surface area. In the second approach, we introduced General Additive Model (GAM) fitting as a new metric for quantifying predictability. Both approaches produced a wide range of predictability for the studied ponds. Some model assumptions-which are considered very different a priori-had minor effects, whereas others produced predictability estimations that showed some degree of divergence. We hypothesize that these diverging estimations of predictability reflect the effect of fluctuations on different types of organisms. The fluctuation analysis described in this manuscript is applicable to a wide variety of systems, including both aquatic and nonaquatic systems, and will be valuable for quantifying and characterizing predictability, which is essential within the expected global increase in the unpredictability of environmental fluctuations. We advocate that a priori information for organisms of interest should be used to select the most suitable metrics estimating predictability, and we provide some guidelines for this approach

    Analysis of Rare, Exonic Variation amongst Subjects with Autism Spectrum Disorders and Population Controls

    Get PDF
    We report on results from whole-exome sequencing (WES) of 1,039 subjects diagnosed with autism spectrum disorders (ASD) and 870 controls selected from the NIMH repository to be of similar ancestry to cases. The WES data came from two centers using different methods to produce sequence and to call variants from it. Therefore, an initial goal was to ensure the distribution of rare variation was similar for data from different centers. This proved straightforward by filtering called variants by fraction of missing data, read depth, and balance of alternative to reference reads. Results were evaluated using seven samples sequenced at both centers and by results from the association study. Next we addressed how the data and/or results from the centers should be combined. Gene-based analyses of association was an obvious choice, but should statistics for association be combined across centers (meta-analysis) or should data be combined and then analyzed (mega-analysis)? Because of the nature of many gene-based tests, we showed by theory and simulations that mega-analysis has better power than meta-analysis. Finally, before analyzing the data for association, we explored the impact of population structure on rare variant analysis in these data. Like other recent studies, we found evidence that population structure can confound case-control studies by the clustering of rare variants in ancestry space; yet, unlike some recent studies, for these data we found that principal component-based analyses were sufficient to control for ancestry and produce test statistics with appropriate distributions. After using a variety of gene-based tests and both meta- and mega-analysis, we found no new risk genes for ASD in this sample. Our results suggest that standard gene-based tests will require much larger samples of cases and controls before being effective for gene discovery, even for a disorder like ASD. © 2013 Liu et al

    Promoting remyelination in multiple sclerosis-recent advances

    Get PDF
    We review the current state of knowledge of remyelination in multiple sclerosis (MS), concentrating on advances in the understanding of the pathology and the regenerative response, and we summarise progress on the development of new therapies to enhance remyelination aimed at reducing progressive accumulation of disability in MS. We discuss key target pathways identified in experimental models, as although most identified targets have not yet progressed to the stage of being tested in human clinical trials, they may provide treatment strategies for demyelinating diseases in the future. Finally, we discuss some of the problems associated with testing this class of drugs, where they might fit into the therapeutic arsenal and the gaps in our knowledge

    A global reference for human genetic variation

    Get PDF
    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.We thank the many people who were generous with contributing their samples to the project: the African Caribbean in Barbados; Bengali in Bangladesh; British in England and Scotland; Chinese Dai in Xishuangbanna, China; Colombians in Medellin, Colombia; Esan in Nigeria; Finnish in Finland; Gambian in Western Division – Mandinka; Gujarati Indians in Houston, Texas, USA; Han Chinese in Beijing, China; Iberian populations in Spain; Indian Telugu in the UK; Japanese in Tokyo, Japan; Kinh in Ho Chi Minh City, Vietnam; Luhya in Webuye, Kenya; Mende in Sierra Leone; people with African ancestry in the southwest USA; people with Mexican ancestry in Los Angeles, California, USA; Peruvians in Lima, Peru; Puerto Ricans in Puerto Rico; Punjabi in Lahore, Pakistan; southern Han Chinese; Sri Lankan Tamil in the UK; Toscani in Italia; Utah residents (CEPH) with northern and western European ancestry; and Yoruba in Ibadan, Nigeria. Many thanks to the people who contributed to this project: P. Maul, T. Maul, and C. Foster; Z. Chong, X. Fan, W. Zhou, and T. Chen; N. Sengamalay, S. Ott, L. Sadzewicz, J. Liu, and L. Tallon; L. Merson; O. Folarin, D. Asogun, O. Ikpwonmosa, E. Philomena, G. Akpede, S. Okhobgenin, and O. Omoniwa; the staff of the Institute of Lassa Fever Research and Control (ILFRC), Irrua Specialist Teaching Hospital, Irrua, Edo State, Nigeria; A. Schlattl and T. Zichner; S. Lewis, E. Appelbaum, and L. Fulton; A. Yurovsky and I. Padioleau; N. Kaelin and F. Laplace; E. Drury and H. Arbery; A. Naranjo, M. Victoria Parra, and C. Duque; S. Däkel, B. Lenz, and S. Schrinner; S. Bumpstead; and C. Fletcher-Hoppe. Funding for this work was from the Wellcome Trust Core Award 090532/Z/09/Z and Senior Investigator Award 095552/Z/11/Z (P.D.), and grants WT098051 (R.D.), WT095908 and WT109497 (P.F.), WT086084/Z/08/Z and WT100956/Z/13/Z (G.M.), WT097307 (W.K.), WT0855322/Z/08/Z (R.L.), WT090770/Z/09/Z (D.K.), the Wellcome Trust Major Overseas program in Vietnam grant 089276/Z.09/Z (S.D.), the Medical Research Council UK grant G0801823 (J.L.M.), the UK Biotechnology and Biological Sciences Research Council grants BB/I02593X/1 (G.M.) and BB/I021213/1 (A.R.L.), the British Heart Foundation (C.A.A.), the Monument Trust (J.H.), the European Molecular Biology Laboratory (P.F.), the European Research Council grant 617306 (J.L.M.), the Chinese 863 Program 2012AA02A201, the National Basic Research program of China 973 program no. 2011CB809201, 2011CB809202 and 2011CB809203, Natural Science Foundation of China 31161130357, the Shenzhen Municipal Government of China grant ZYC201105170397A (J.W.), the Canadian Institutes of Health Research Operating grant 136855 and Canada Research Chair (S.G.), Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research (M.K.D.), a Le Fonds de Recherche duQuébec-Santé (FRQS) research fellowship (A.H.), Genome Quebec (P.A.), the Ontario Ministry of Research and Innovation – Ontario Institute for Cancer Research Investigator Award (P.A., J.S.), the Quebec Ministry of Economic Development, Innovation, and Exports grant PSR-SIIRI-195 (P.A.), the German Federal Ministry of Education and Research (BMBF) grants 0315428A and 01GS08201 (R.H.), the Max Planck Society (H.L., G.M., R.S.), BMBF-EPITREAT grant 0316190A (R.H., M.L.), the German Research Foundation (Deutsche Forschungsgemeinschaft) Emmy Noether Grant KO4037/1-1 (J.O.K.), the Beatriu de Pinos Program grants 2006 BP-A 10144 and 2009 BP-B 00274 (M.V.), the Spanish National Institute for Health Research grant PRB2 IPT13/0001-ISCIII-SGEFI/FEDER (A.O.), Ewha Womans University (C.L.), the Japan Society for the Promotion of Science Fellowship number PE13075 (N.P.), the Louis Jeantet Foundation (E.T.D.), the Marie Curie Actions Career Integration grant 303772 (C.A.), the Swiss National Science Foundation 31003A_130342 and NCCR “Frontiers in Genetics” (E.T.D.), the University of Geneva (E.T.D., T.L., G.M.), the US National Institutes of Health National Center for Biotechnology Information (S.S.) and grants U54HG3067 (E.S.L.), U54HG3273 and U01HG5211 (R.A.G.), U54HG3079 (R.K.W., E.R.M.), R01HG2898 (S.E.D.), R01HG2385 (E.E.E.), RC2HG5552 and U01HG6513 (G.T.M., G.R.A.), U01HG5214 (A.C.), U01HG5715 (C.D.B.), U01HG5718 (M.G.), U01HG5728 (Y.X.F.), U41HG7635 (R.K.W., E.E.E., P.H.S.), U41HG7497 (C.L., M.A.B., K.C., L.D., E.E.E., M.G., J.O.K., G.T.M., S.A.M., R.E.M., J.L.S., K.Y.), R01HG4960 and R01HG5701 (B.L.B.), R01HG5214 (G.A.), R01HG6855 (S.M.), R01HG7068 (R.E.M.), R01HG7644 (R.D.H.), DP2OD6514 (P.S.), DP5OD9154 (J.K.), R01CA166661 (S.E.D.), R01CA172652 (K.C.), P01GM99568 (S.R.B.), R01GM59290 (L.B.J., M.A.B.), R01GM104390 (L.B.J., M.Y.Y.), T32GM7790 (C.D.B., A.R.M.), P01GM99568 (S.R.B.), R01HL87699 and R01HL104608 (K.C.B.), T32HL94284 (J.L.R.F.), and contracts HHSN268201100040C (A.M.R.) and HHSN272201000025C (P.S.), Harvard Medical School Eleanor and Miles Shore Fellowship (K.L.), Lundbeck Foundation Grant R170-2014-1039 (K.L.), NIJ Grant 2014-DN-BX-K089 (Y.E.), the Mary Beryl Patch Turnbull Scholar Program (K.C.B.), NSF Graduate Research Fellowship DGE-1147470 (G.D.P.), the Simons Foundation SFARI award SF51 (M.W.), and a Sloan Foundation Fellowship (R.D.H.). E.E.E. is an investigator of the Howard Hughes Medical Institute

    Signalling Pathways that Inhibit the Capacity of Precursor Cells for Myelin Repair

    Get PDF
    In demyelinating disorders such as Multiple Sclerosis (MS), targets of injury are myelin and oligodendrocytes, leading to severe neurological dysfunction. Regenerative therapies aimed at promoting oligodendrocyte maturation and remyelination are promising strategies for treatment in demyelinating disorders. Endogenous precursor cells or exogenous transplanted cells are potential sources for remyelinating oligodendrocytes in the central nervous system (CNS). Several signalling pathways have been implicated in regulating the capacity of these cell populations for myelin repair. Here, we review neural precursor cells and oligodendrocyte progenitor cells as potential sources for remyelinating oligodendrocytes and evidence for the functional role of key signalling pathways in inhibiting regeneration from these precursor cell populations

    Investigation of Sequential Growth Factor Delivery during Cuprizone Challenge in Mice Aimed to Enhance Oligodendrogliogenesis and Myelin Repair

    Get PDF
    Repair in multiple sclerosis involves remyelination, a process in which axons are provided with a new myelin sheath by new oligodendrocytes. Bone morphogenic proteins (BMPs) are a family of growth factors that have been shown to influence the response of oligodendrocyte progenitor cells (OPCs) in vivo during demyelination and remyelination in the adult brain. We have previously shown that BMP4 infusion increases numbers of OPCs during cuprizone-induced demyelination, while infusion of Noggin, an endogenous antagonist of BMP4 increases numbers of mature oligodendrocytes and remyelinated axons following recovery. Additional studies have shown that insulin-like growth factor-1 (IGF-1) promotes the survival of OPCs during cuprizone-induced demyelination. Based on these data, we investigated whether myelin repair could be further enhanced by sequential infusion of these agents firstly, BMP4 to increase OPC numbers, followed by either Noggin or IGF-1 to increase the differentiation and survival of the newly generated OPCs. We identified that sequential delivery of BMP4 and IGF-1 during cuprizone challenge increased the number of mature oligodendrocytes and decreased astrocyte numbers following recovery compared with vehicle infused mice, but did not alter remyelination. However, sequential delivery of BMP4 and Noggin during cuprizone challenge did not alter numbers of oligodendrocytes or astrocytes in the corpus callosum compared with vehicle infused mice. Furthermore, electron microscopy analysis revealed no change in average myelin thickness in the corpus callosum between vehicle infused and BMP4-Noggin infused mice. Our results suggest that while single delivery of Noggin or IGF-1 increased the production of mature oligodendrocytes in vivo in the context of demyelination, only Noggin infusion promoted remyelination. Thus, sequential delivery of BMP4 and Noggin or IGF-1 does not further enhance myelin repair above what occurs with delivery of Noggin alone

    “Real Men Don't”: Constructions of Masculinity and Inadvertent Harm in Public Health Interventions

    No full text
    Research shows that constraining aspects of male gender norms negatively influence both women’s and men’s health. Messaging that draws on norms of masculinity in health programming has been shown to improve both women’s and men’s health, but some types of public health messaging (e.g., Man Up Monday, a media campaign to prevent the spread of sexually transmitted infections) can reify harmful aspects of hegemonic masculinity that programs are working to change. We critically assess the deployment of hegemonic male norms in the Man Up Monday campaign. We draw on ethical paradigms in public health to challenge programs that reinforce harmful aspects of gender norms and suggest the use of gender-transformative interventions that challenge constraining masculine norms and have been shown to have a positive effect on health behaviors
    corecore