571 research outputs found

    Functional lesional neurosurgery for tremor: back to the future?

    Get PDF
    For nearly a century, functional neurosurgery has been applied in the treatment of tremor. While deep brain stimulation has been in the focus of academic interest in recent years, the establishment of incisionless technology, such as MRI-guided high-intensity focused ultrasound, has again stirred interest in lesional approaches.In this article, we will discuss the historical development of surgical technique and targets, as well as the technological state-of-the-art of conventional and incisionless interventions for tremor due to Parkinson's disease, essential and dystonic tremor and tremor related to multiple sclerosis (MS) and midbrain lesions. We will also summarise technique-inherent advantages of each technology and compare their lesion characteristics. From this, we identify gaps in the current literature and derive future directions for functional lesional neurosurgery, in particularly potential trial designs, alternative targets and the unsolved problem of bilateral lesional treatment. The results of a systematic review and meta-analysis of the consistency, efficacy and side effect rate of lesional treatments for tremor are presented separately alongside this article

    Collective Animal Behavior from Bayesian Estimation and Probability Matching

    Get PDF
    Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is based on empirical fits to observations and we lack first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching.
In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability given by the Bayesian estimation that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior

    Chromatin signature of embryonic pluripotency is established during genome activation

    Get PDF
    available in PMC 2011 April 8.After fertilization the embryonic genome is inactive until transcription is initiated during the maternal–zygotic transition. This transition coincides with the formation of pluripotent cells, which in mammals can be used to generate embryonic stem cells. To study the changes in chromatin structure that accompany pluripotency and genome activation, we mapped the genomic locations of histone H3 molecules bearing lysine trimethylation modifications before and after the maternal–zygotic transition in zebrafish. Histone H3 lysine 27 trimethylation (H3K27me3), which is repressive, and H3K4me3, which is activating, were not detected before the transition. After genome activation, more than 80% of genes were marked by H3K4me3, including many inactive developmental regulatory genes that were also marked by H3K27me3. Sequential chromatin immunoprecipitation demonstrated that the same promoter regions had both trimethylation marks. Such bivalent chromatin domains also exist in embryonic stem cells and are thought to poise genes for activation while keeping them repressed. Furthermore, we found many inactive genes that were uniquely marked by H3K4me3. Despite this activating modification, these monovalent genes were neither expressed nor stably bound by RNA polymerase II. Inspection of published data sets revealed similar monovalent domains in embryonic stem cells. Moreover, H3K4me3 marks could form in the absence of both sequence-specific transcriptional activators and stable association of RNA polymerase II, as indicated by the analysis of an inducible transgene. These results indicate that bivalent and monovalent domains might poise embryonic genes for activation and that the chromatin profile associated with pluripotency is established during the maternal–zygotic transition.National Institutes of Health (U.S.) (grant 1R01 HG004069)National Institutes of Health (U.S.) (grant 5R01 GM56211)Human Frontier Science Program (Strasbourg, France) (LT-00090/2007)European Molecular Biology Organization (fellowship

    The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes

    Get PDF
    All plants are inhabited internally by diverse microbial communities comprising bacterial, archaeal, fungal, and protistic taxa. These microorganisms showing endophytic lifestyles play crucial roles in plant development, growth, fitness, and diversification. The increasing awareness of and information on endophytes provide insight into the complexity of the plant microbiome. The nature of plant-endophyte interactions ranges from mutualism to pathogenicity. This depends on a set of abiotic and biotic factors, including the genotypes of plants and microbes, environmental conditions, and the dynamic network of interactions within the plant biome. In this review, we address the concept of endophytism, considering the latest insights into evolution, plant ecosystem functioning, and multipartite interactions.EU Cost Action [FA1103, 312117]; FWF (Austrian Science Foundation) [P26203-B22, P24569-B25]; Portuguese FCT (Foundation for Science and Technology) [SFRH/BPD/78931/2011]info:eu-repo/semantics/publishedVersio

    Neutrinos from Stored Muons nuSTORM: Expression of Interest

    Get PDF
    The nuSTORM facility has been designed to deliver beams of electron and muon neutrinos from the decay of a stored muon beam with a central momentum of 3.8 GeV/c and a momentum spread of 10%. The facility is unique in that it will: serve the future long- and short-baseline neutrino-oscillation programmes by providing definitive measurements of electron-neutrino- and muon-neutrino-nucleus cross sections with percent-level precision; allow searches for sterile neutrinos of exquisite sensitivity to be carried out; and constitute the essential first step in the incremental development of muon accelerators as a powerful new technique for particle physics. Of the world's proton-accelerator laboratories, only CERN and FNAL have the infrastructure required to mount nuSTORM. Since no siting decision has yet been taken, the purpose of this Expression of Interest (EoI) is to request the resources required to: investigate in detail how nuSTORM could be implemented at CERN; and develop options for decisive European contributions to the nuSTORM facility and experimental programme wherever the facility is sited. The EoI defines a two-year programme culminating in the delivery of a Technical Design Report

    Neutrinos

    Get PDF
    Report of the Community Summer Study 2013 (Snowmass) Intensity Frontier Neutrino Working GroupReport of the Community Summer Study 2013 (Snowmass) Intensity Frontier Neutrino Working GroupThis document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos

    Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

    Get PDF
    Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Motivation and treatment engagement intervention trial (MotivaTe-IT): The effects of motivation feedback to clinicians on treatment engagement in patients with severe mental illness

    Get PDF
    Background: Treatment disengagement and non-completion poses a major problem for the successful treatment of patients with severe mental illness. Motivation for treatment has long been proposed as a major determinant of treatment engagement, but exact mechanisms remain unclear. This current study serves three purposes: 1) to determine whether a feedback intervention based on the patients' motivation for treatment is effective at improving treatment engagement (TE) of severe mentally ill patients in outpatient psychiatric treatment, 2) to gather insight into motivational processes and pos

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Get PDF
    published_or_final_versio
    corecore