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Abstract

Animals living in groups make movement decisions
that depend, among other factors, on social interac-
tions with other group members. Our present under-
standing of social rules in animal collectives is based
on empirical fits to observations and we lack first-
principles approaches that allow their derivation. Here
we show that patterns of collective decisions can be
derived from the basic ability of animals to make prob-
abilistic estimations in the presence of uncertainty.
We build a decision-making model with two stages:
Bayesian estimation and probabilistic matching. In the
first stage, each animal makes a Bayesian estimation of
which behavior is best to perform taking into account
personal information about the environment and so-
cial information collected by observing the behaviors of
other animals. In the probability matching stage, each
animal chooses a behavior with a probability given by
the Bayesian estimation that this behavior is the most
appropriate one. This model derives very simple rules
of interaction in animal collectives that depend only on
two types of reliability parameters, one that each ani-
mal assigns to the other animals and another given by
the quality of the non-social information. We test our
model by obtaining theoretically a rich set of observed
collective patterns of decisions in three-spined stickle-
backs, Gasterosteus aculeatus, a shoaling fish species.
The quantitative link shown between probabilistic esti-
mation and collective rules of behavior allows a better
contact with other fields such as foraging, mate selec-
tion, neurobiology and psychology, and gives predic-
tions for experimenst directly testing the relationship
between estimation and collective behavior.
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Introduction

Animals need to make decisions without certainty in
which option is best. This uncertainty is due to the
ambiguity of sensory data but also to limited process-
ing capabilities, and is an intrinsic and general property
of the representation that animals can build about the
world. A general way to make decisions in uncertain
situations is to make probabilistic estimations [1, 2].
There is evidence that animals use probabilistic esti-
mations, for example in the early stages of sensory per-
ception [3–11], sensory-motor transformations [12–14],
learning [15–17] and behaviors in an ecological context
such as strategies for food patch exploitation [18–20]
and mate selection [21], among others [13, 17, 21, 22].

An additional source of information about the envi-
ronment may come from the behavior of other animals
(social information) [23–27]. This information can have
different degrees of ambiguity. In particular cases, the
behavior of conspecifics directly reveals environmental
characteristics (for example, food encountered by an-
other individual informs about the quality of a food
patch). Cases in which social information correlates
well with the environmental characteristic of interest
have been very well studied [28–36]. But in most cases
social information is ambiguous and potentially mis-
leading [26, 37]. In spite of this ambiguity, there is
evidence that, at least in specific cases such as preda-
tor avoidance [38,39] and mate choice [40], animals use
this kind of information.

Social animals have a continuous flow of information
about the environment coming from the behaviours
other animals. It is therefore possible that social an-
imals use it at all times, making probabilistic estima-
tions to counteract its ambiguity. If this is the case,
social information might be a major determinant of
the structure of animal collectives. In order to test
this hypothesis, we have developed a Bayesian decision-
making model that includes both personal and social
information that naturally weights them according to
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their reliability in order to get a better estimate of the
environment. All members of the group can then use
these improved estimations to make better decisions,
and collective patterns of decisions then emerge from
these individuals interacting through their perceptual
systems.

We show that this model derives social rules that
economically explain detailed experiments of decision-
making in animal groups [41,42]. This approach should
complement the empirical approach used in the study
of animal groups [41–45], finding which mathemati-
cal functions should correspond to each experimental
problem and to propose experiments relating estima-
tion and collective motion. The Bayesian structure of
our model also builds a bridge between the field of
collective behavior and other fields of animal behav-
ior, such as optimal foraging theory [18–22] and oth-
ers [21, 22]. Further, it explicitly includes in a natural
way different cognitives abilities, making more direct
contact with neurobiology and psychology [3–10,17].

Results

General model

We derived a model in which each individual decides
from an estimation of which behavior is best to per-
form. These behaviors can be to go to one of several
different places, to choose among some behaviors like
forage, explore or run away, or any other set of options.
The general derivation of the model for any set of op-
tions can be found in the Supporting Text. For clarity,
here we particularize to the case of choosing the best of
two spatial locations, x and y. ‘Best’ may correspond
to the safest, the one with highest food density or most
interesting for any other reasons. We assume that each
decision maker uses in the estimation of the best loca-
tion both non-social and social information. Non-social
information may include sensory information about the
environment (i.e. shelter properties, potential preda-
tors, food items), memory of previous experiences and
internal states. Social information consists of the be-
haviors performed by other decision-makers. Each in-
dividual estimates the probability that each location,
say y, is the best one, using its non-social information
(c) and the behavior of the other individuals (B),

P (Y |c, B), (1)

where Y stands for ’y is the best location’.
P (X |c, B) = 1 − P (Y |c, B), because there are only
two locations to choose from. We can compute the

probability in Eq. 1 using Bayes’ theorem,

P (Y |c, B) =
P (B|Y, c)P (Y |c)

P (B|X, c)P (X |c) + P (B|Y, c)P (Y |c) .
(2)

Simply by dividing numerator and denominator by the
numerator we find an interesting structure,

P (Y |c, B) =
1

1 + aS
, (3)

where

a =
P (X |c)
P (Y |c) (4)

contains only non-social information, and

S =
P (B|X, c)

P (B|Y, c) (5)

captures all the social information. Non-social infor-
mation (c) is also present in the social term S, so the
same behavior can have differents effect on the esti-
mation depending on the sensory information from the
environment. Note that the simple multiplicative in-
teraction between the social and non-social terms in
Eq. 3 stems from Bayesian estimation, not requiring
any approximations. In order to get an expression that
depends on the individual behaviors observed by the
deciding individual, we approximated S in Eq. 5 in
the following way. The probability P (B|Y, c) may be
approximated using the assumption that the focal in-
dividual does not make use of the correlations among
the behaviour of others, but instead assumes their be-
haviours to be independent of each other. Then, the
probability of a given set of behaviors is just the prod-
uct of the probabilities of the individual behaviors,

P (B|Y, c) = Z

N∏
i=1

P (bi|Y, c), (6)

where B is the set of all the behaviors of the other
N animals, B = {bi}Ni=1, and bi denotes the behav-
ior of one of them, individual i. Z is a combinato-
rial term counting the number of possible decision se-
quences that lead to the set of behaviors B, that will
cancel out in the next step. Substituing Eq. 6 and the
corresponding expression for P (B|X, c) into Eq. 5, we
get

S =

N∏
i=1

P (bi|X, c)

P (bi|Y, c) . (7)

Instead of an expression in terms of as many behav-
iors as individuals, it may be more useful to consider
a discrete set of behavioral classes. For example, in
our two-choice example, these behavioral classes may
be ‘go to x’ (denoted βx), ‘go to y’ (βy) and ‘remain

2

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
93

9.
1 

: P
os

te
d 

5 
M

ay
 2

01
1



undecided’ (βu). Frequently these behavioral classes
(or simply ‘behaviors’) will be directly related to the
choices, so that each behavior will consist of choosing
one option. For example, behaviors βx and βy are di-
rectly related to choices x and y, respectively. But
there may be behaviors not related to any option as
the case of undecision, βu, or related to choices in an
indirect way. Let us consider K different behavioral
classes, {βk}Kk=1. We do not here consider individual
differences for animals performing the same behavior
(say, behavior β1), so they have the same probabili-
ties P (β1|X, c) and P (β1|Y, c). Thus, if for example
the n1 first individuals are performing behavior β1, we

have that
∏n1

i=1
P (bi|X,c)
P (bi|Y,c) =

(
P (β1|X,c)
P (β1|Y,c)

)n1

. We can then

write Eq. 7 as

S =

K∏
k=1

snk

k , (8)

where nk is the number of individuals performing be-
havior βk, and

sk =
P (βk|X, c)

P (βk|Y, c) . (9)

The term sk is the probability that an individual per-
forms behavior βk when x is the best option, over the
probability that it performs the same behavior when
y is the best choice. The higher sk the more reliably
behavior βk indicates that x is better than y, so we can
understand sk as the reliability parameter of behavior
βk. If sk = ∞ observing behavior βk indicates with
complete certainty that x is the best option, while for
sk = 1 behavior βk gives no information. For sk < 1
observing behavior βk favors y as the best option, and
more so the closer it is to 0. Note that P (βk|X, c) and
P (βk|Y, c) are not the actual probabilities of perform-
ing behavior βk, but estimates of these probabilities
that the deciding animal uses to assess the reliability
of the other decision-makers. These estimates may be
‘hard-wired’ as a result of evolutionary adaptation, but
may also be subject to change due to learning.
We have so far only considered the perceptual stage

of decision-making, in which the deciding individual
estimates the probabilitiy for each behavior to be the
best one. Now it must decide according to this estima-
tion. A deterministic decision rule could be to go to
y when P (Y |c, B) > P (X |c, B). We however found a
better correspondence with data using a softer version
of this rule known as probability matching that has
been found to apply in cognitive [46] and perceptual
tasks [47]. According to this rule, the probability of
going to y, Py, is the same as the estimated probabil-
ity that y is the best location, so

Py = P (Y |c, B). (10)

Alternatively, we could consider noisy versions of the
deterministic rule but at the price of adding at least
one extra parameter.
To summarize, using Eqs. 3, 8 and 10 we have that

the probability that the deciding individual goes to y
is

Py =

(
1 + a

K∏
k=1

snk

k

)−1

. (11)

In the following sections, we particularize Eq. 11
to different experimental settings to test its results
against existing rich experimental data sets that have
previously been fitted to different mathematical ex-
pressions [41, 42].

Symmetric set-up

We first considered the simple case of two identical
equidistant sites, x and y, Fig. 1A, and the three be-
haviors ‘go to x’ (βx), ‘go to y’ (βy) and ‘remain unde-
cided’ (βu). Eq. 11 in this case reduces to

Py =
(
1 + a snx

x sny
y sN−nx−ny

u

)−1
, (12)

where nx and ny are the number of individuals that
have already chosen x and y, respectively, and N + 1
is the size of the group containing our focal individual
and other N animals. As the set-up is symmetric, the
sensory information available to the deciding individ-
ual is the same for both options so P (X |c) = P (Y |c),
and a = 1 according to Eq. 4. Therefore, the non-social
term in Eq. 12 cancels out. Also, since undecision is
not related to any particular choice, symmetry imposes
P (βu|X, c) = P (βu|Y, c), so undecision is not informa-
tive, su = 1 (Eq. 9). For the other two behaviors, going
to x (βx) and going to y (βy), Eq. 9 gives

sx =
P (βx|X, c)

P (βx|Y, c)
sy =

P (βy|X, c)

P (βy|Y, c) .
(13)

P (βx|X, c) and P (βy|Y, c) are the estimated probabil-
ities of making the right choice, that is, going to x
when x is the best option, or going to y when y is
the best option. Since in this case the sensory infor-
mation is identical for both choices the probability of
making the correct choice must be the same for both
options, P (βx|X, c) = P (βy|Y, c). An analogous ar-
gument holds for the incorrect choices, P (βx|Y, c) =
P (βy|X, c), giving

sx = 1/sy. (14)

In cases in which sx = 1/sy, we find it convenient to
express reliability more generally as

s ≡ sx = 1/sy, (15)
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;

Figure 1. Model with individuals estimating which of
two identical places is best. (A) Schematic diagram of indi-
viduals choosing between two identical locations x and y when
there are already nx (ny) individuals at x (y). (B) Probability
of going to y as a function of the difference between the number
of individuals at y and x, Eq. 16. (C ) Sequential application of
the behavioural rule in Eq. 16 with s = 2.5, for the simple case
of a group of two individuals (bottom). The width of the arrows
is proportional to the probability of each transition. The 3 pos-
sible final configurations, with different proportion of individuals
going to y (0, 0.5 and 1), have different probabilities of taking
place, with both fish together at x or y being more probable than
a group split (top).

which is the ratio of the probability of making the cor-
rect choice and the probability of making a mistake,
for both behaviors. Using this definition and given
that a = au = 1, Eq. 12 reduces to

Py =
(
1 + s−Δn

)−1
, (16)

with the variable Δn ≡ ny − nx. Eq. 16 describes
a sigmoidal function that is steeper the higher the s
(Fig. 1B). Therefore, for very reliable behaviors (high
s, meaning individuals that are much more likely to
make correct choices than erroneous ones), Py grows
fast with Δn and the deciding individual then goes to
y with high probability when taking into account the
behaviors of only very few individuals.

The behavior of the group is obtained by applying
the decision rule in Eq. 16 sequentially to each indi-
vidual (see Methods). After each behavioural choice,
we update the number of individuals at x and y, us-
ing the new nx and ny for the next deciding individual
(Fig. 1C, bottom). Repeating this procedure for all the
individuals in the group, we can compute the proba-
bility for each possible final outcome of the experiment
(Fig. 1C, top).
The relevance of the symmetric case is that the

model has a single parameter and a single variable,
enabling a powerful comparison against experimental

data. We tested the model using an existing rich
data set of collective decisions in three-spined stick-
lebacks [41], a shoaling fish species. This data set
was obtained using a group of Ntot fish choosing be-
tween two identical refugia, one on their left and an-
other on their right (Fig. 2A), equivalent to locations
x and y in the model (Fig. 1A). At the start of the
experiment, mx (my) replica fish made of resin were
moved along lines on the left (right) towards the refu-
gia (Fig. 2A). The experimental results consisted on
the statistics of collective decisions between the two
refugia for 19 different cases using different group sizes
Ntot = 2, 4 or 8 and different numbers of replicas going
left and right, mx : my = {1:1, 2:2, 0:1, 1:2, 0:2, 1:3,
0:3} (Fig. 2B, blue histograms). To compare against
these experimental data, we calculated the probability
of finding a collective pattern applying the individual
behavioural rule in Eq. 16 iteratively over each fish for
the 19 experimental settings. We found a good fit of
the model to the experimental data using for the 19
graphs the same value s = 2.2 (Fig. 2B, red line). The
model is robust, with good fits in the interval s = 2-
4 (Fig. S1). Despite the simplicity of the behavioral
rule in Eq. 16, it reproduces the experimental results,
including the dependence on the total number of fish
Ntot, even though the rule is independent of this pa-
rameter. The dependence on Ntot emerges from the
application of the rule to the Ntot individuals in the
group (Fig. S2). Note for example that the final ex-
perimental configuration located at the center of each
graph (corresponding to half of the fish going to each
side) is less likely the larger the group. Reaching the
central state means that half of the fish selected the side
that had fewer individuals at the moment they made
the decision (taking the option with lower probability).
As the group size increases, more fish must make the
lower-probability choice to reach the central state, so
its probability decreases even though there is no ex-
plicit influence of Ntot in Eq. 16 (compare Fig. S2A
with Fig. 1C ). Group decision-making in three-spined
sticklebacks shows a single type of distribution of U-
shape (or J-shape when there is a bias). However, the
model in Eq. 16 also gives two other types of distribu-
tions, one bell-shaped and another M-shaped depend-
ing on the value of s and the number of animals in the
group (Fig. S3).

Symmetric set-up with modified replicas of
animals

An interesting modification of the experimental set-up
consists in using replicas of the animals that we can
modify to potentially alter their estimated reliability
by the animals. We considered the particular case, mo-
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Figure 2. Comparison between the model and stickle-
back choices in symmetric set-up. (A) Schematic diagram
of symmetric set-up with a group of sticklebacks (in black) choos-
ing between two identical refugia and with different numbers of
replica fish (in red) going to x and y. (B) Experimentally mea-
sured statistics of final configurations of fish choices from 20 ex-
perimental repetitions [41] (blue histogram) and results from the
model in Eq. 16 in the main text (red line using reliability pa-
rameter s = 2.2; red region: 95% confidence interval; green line
with s = 2.6). Different graphs correspond to different stickle-
back group sizes and different number of replicas going to x and
y.

tivated by experiments in [42], of two types of modified
replicas with different characteristics (for example, fat
or thin), Fig. 3A. We considered 7 behaviors: ‘animal
goes to x’ (βfx), ‘animal goes to y’ (βfy), ‘most attrac-
tive replica goes to x’ (βRx), ‘most attractive replica
goes to y’ (βRy) ‘least attractive replica goes to x’ (βrx),
‘least attractive replica goes to y’ (βry), and ’animal re-
mains undecided’ (βfu). The probability of going to y
in Eq. 11 then reduces to

Py =
(
1 + a snfx

fx s
nfy

fy snRx

Rx s
nRy

Ry snrx
rx snry

ry s
Nf−nfx−nfy

fu

)−1

,

(17)
where subindex ‘f’ refers to real fish and ‘R’ (‘r’) to
replicas of the most (least) attractive type. As in the
previous section, symmetry imposes that a = 1 and
sfu = 1. It also imposes the following relations be-
tween the reliability parameters, sf ≡ sfx = 1/sfy,
sR ≡ sRx = 1/sRy, sr ≡ srx = 1/sry. Therefore,

Py =
(
1 + s−Δnf

f s−ΔnR

R s−Δnr
r

)−1

, (18)

where Δnf ≡ nfy − nfx, ΔnR ≡ nRy − nRx and Δnr ≡
nry − nrx. In the particular case of only two different
replicas, one going to x and the other to y and for
notational simplicity taking the convention that the
most (least) attractive replica goes to y (x), we have
ΔnR = 1 and Δnr = −1. Therefore,

Py =

(
1 +

sr
sR

s−Δnf

f

)−1

. (19)

Note that the probability in Eq. 19 does not depend on
sr and sR separately, but only on their ratio. Therefore,
in this case the model uses only two parameters (sf and
sr/sR). We compared the model with the stickleback
data set from [42], Fig. 3. The data in Fig. 3B has a
different type of replica pair in each row, so in princi-
ple we would fit a different ratio sr/sR for each row.
But note that the first three rows correspond to ex-
periments with the same three replicas (large, medium
and small), combined in different pairs. The same can
be said for the second and third threesomes of rows.
Therefore, there are only two free parameters for each
three rows. On the other hand, sf should have the same
value for all cases. The model again reproduces the ex-
perimental results reported in reference [42] , obtaining
the best fit for sf = 2.9 (Fig. 3B). The result is robust,
with good fits for sf = 2-4 (Fig. S1) in accord with the
value obtained for the case shown in Fig. 2B.

Asymmetric set-up

We finally considered the case in which sites x and y
are different and the three behaviors are ‘go to x’ (βx),
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Figure 3. Comparison between the model and stickle-
back choices with two differently modified replicas. (A)
Schematic diagram of symmetric set-up with a group of stickle-
backs (in black) choosing between two identical refugia and with
one replica fish going to x and a different one (in size, shape
or pattern) going to y (in red). (B) Experimentally measured
statistics of final configurations of fish choices from 20 experi-
mental repetitions [42] (blue histogram) and results from cogni-
tive model in Eq. 19 in the main text (red line using reliability
parameter sf = 2.9 and sr/sR = 0.35, 0.7, 0.5, 0.52, 0.69, 0.75,
0.43, 0.55, 0.78, 0.43, for each row from top to bottom; red re-
gion: 95% confidence interval; green line with sf = 2.6 and same
ratios sr/sR as for red line). Different graphs correspond to dif-
ferent stickleback group sizes and different types of replicas going
to x and y.

‘go to y’ (βy) and ‘remain undecided’ (βu). Eq. 11
reduces to

Py =
(
1 + a snx

x sny
y sN−nx−ny

u

)−1
. (20)

The term a = P (X |c)/P (Y |c) represents the non-social
information and in general a �= 1 because the set-up
is asymmetric by design. This asymmetry might also
affect how a deciding animal takes into account the be-
haviours of other animals depending on which side they
chose, making in general sx �= 1/sy. Also, undecision
might be informative. For example, if non-social infor-
mation indicates the possible presence of a predator at
y, the undecision of other animals might confirm this
to the deciding individual, further biasing the decision
towards x. Therefore, we may have su �= 1.
But it may also be the case that the set-up’s asym-

metry does not affect the social terms, so we also tested
a simpler model in which s ≡ sx = 1/sy and su = 1,
giving

Py =
(
1 + a s−Δn

)−1
. (21)

The stickleback dataset reported in reference [41] is
ideally suited to test the asymmetric model for the ex-
periments that were performed with a replica predator
at the right arm (Fig. 4A). The model in Eq. 21 fits
best the data with s = 2.6 (Fig. 4B) and it is robust
with a good fit in s = 2-4 (Fig. S1). The more complex
model in Eq. 20 gives fits very similar to those of sim-
pler model. Specifically, parameter su was rejected by
the Bayes Information Criterion [48], indicating that
fish do not rely on undecided individuals. The fact
that fish rely differently on other fish depending on the
option they have taken could not be ruled out by the
Bayes Information Criterion, but in any case the im-
pact of this difference on the data is very small.
In the experiments in Fig. 2 and Fig. 4, we have as-

sumed that the replicas are perceived by fish as real
animals. However, it is reasonable to think that fish
might perceive the difference, and rely differently on
replicas and real fish. To test this, we considered dif-
ferent behaviors for fish and replicas, such as ‘fish goes
to x’ and ‘replica goes to x’. Making that distinction,
we get that Eq. 11 reduces to

Py =
(
1 + a snfx

fx s
nfy

fy snrx
rx snry

ry s
Nf−nfx−nfy

fu

)−1

. (22)

The Bayes Information Criterion rejects only parame-
ter sfu. However, the addition of the new parameters
that distinguish replica from real fish give very small
improvements in the fits compared to results of the
simpler models in Eq. 16 and Eq. 21 (see Fig. S4 and
Fig. S6), suggesting that fish follow replicas as much
as they follow real fish.

Discussion

We have shown that probabilistic estimation in the
presence of uncertainty can explain collective animal
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Figure 4. Comparison between the model and stickle-
back choices in asymmetric set-up. A) Schematic diagram
of asymmetric set-up (predator at y, big fish depicted in red)
with a group of sticklebacks (in black) choosing between two
refugia, and replica fish (small fish depicted in red) going to y.
(B) Experimentally measured statistics of final configurations
of fish choices from 20 experimental repetitions [41] (blue his-
togram) and results from cognitive model in Eq. 21 in the main
text (red line; s = 2.6, a = 9.5; red region: 95% confidence inter-
val). Different graphs correspond to different stickleback group
sizes and different number of replicas going to y.

decisions. This approach generated a new expression
for each experimental manipulation, Eq. 16-21, and
was naturally extended to test for more refined cogni-
tive capacities, Eq. 22. The model was found to have a
good correspondence with the data in three experimen-
tal settings (Figs. 2-4), always giving a good fit with
the social reliability parameter s in the interval 2-4.
Indeed, all the data have a very good fit with s = 2.6
(Figs. 2-3, green lines; red line in Fig. 4 is already for
sx = 2.6). For the the data used in this paper, previ-
ous empirical fits used more parameters [41] (Fig. S4
and Fig. S6, blue line), and added more complex be-
havioral rules when the basic model failed [42] (Fig. S5,
blue line). Our approach thus gains in simplicity. It
also finds an expression for each set-up with expressions
for complex set-ups obtained with add-ons to those of
simpler set-ups, making the model scalable and easier

to understand in terms of simpler experiments.

Collective animal behavior has been subject to a par-
ticularly careful quantitative analysis. Previous studies
have given descriptions led by the powerful idea that
complex collective behaviors can emerge from simple
individual rules. In fact, some systems have been found
empirically to obey rules that are mathematically sim-
ilar or the same as some of the ones presented in this
paper, further supporting the idea that probabilistic
estimation might underlie collective decision rules in
many species. For example, a function like the one
in Eq. 16 has been used to describe the behavior of
Pharaoh’s ant [49], a function like Eq. 21 for mosquito
fish [50], and a function like the one in the right-hand-
side of Eq. 21 for meerkats [51]. But despite the im-
portance of group decisions in animals, little is known
about the origin of such simple individual rules. This
paper argues that probabilistic estimation can be an
underlying substrate for the rules explaining collective
decisions, thus helping in their evolutionary explana-
tion.

Our model is naturally compatible with other the-
ories that use a Bayesian formalism to study different
aspects of behavior and neurobiology, thus contribut-
ing to a unified approach of information processing in
animals. For example, it may be combined with the
formalism of Bayesian foraging theory [18], through an
expansion of the non-social reliability a. Related to
this case, a very well studied example of use of so-
cial information is the one in which one individual can
observe directly the food collected by another individ-
ual [28–32]. In this case, the social information is as
unambigous as the non-social one, so in the end both
types of information will have a similar mathematical
form, in agreement with previous work [28–32]. Other
kinds of social information (such as another individ-
ual’s decision to leave a food patch or choices of fe-
males in mating [40]) would enter naturally in our reli-
ability terms sk. In discussing these and similar prob-
lems, it has been proposed that animals should use
social information when their personal information is
poor, and ignore it otherwise [25, 26, 40]. Our model
provides a quantitative framework for this problem,
predicting that social information is always used, only
with different weights with respect to other sources of
information. Bayesian estimation is also a prominent
approach to study decisions in Neurobiology and Psy-
chology [3–17] and it would be of interest to explore
the mechanisms and role played by the multiplicative
relation between non-social and social terms.

Our approach also makes a number of predictions.
For example, it derives the probability of choosing
among M options (see Eq. S16 of the Supporting
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Text), that for the symmetric case reduces to

Pμ =

⎛
⎝1 +

M∑
m �=μ

s−(nµ−nm)

⎞
⎠

−1

, (23)

predicted also to fit the data for cases with M > 2
options.
We also predict a quantitative link between estima-

tion and collective behavior. The parameters a and
sk in our model are in fact not merely fitting param-
eters, but true experimental variables. Manipulations
of a and sk should allow to test that changes in col-
lective behavior follow the predictions of the model. A
counterintuitive prediction about the manipulation of
sk is that external factors unrelated to the social com-
ponent can nevertheless modify it. For example, a fish
that usually finds food in a given environment should
interpret a sudden turn of one of his mates as an indi-
cation that it has found food, and therefore will follow
it. In contrast, another fish that is not expected to find
food in that environment will not interpret the sudden
turn as indicative of food, and will not follow. Thus,
the model predicts that the a priori probability of find-
ing food (to which each fish can be trained in isolation)
will modify its propensity to follow conspecifics. An al-
ternative approach that would not need manipulation
of the reliabilities sk would consist in showing that the
probability of copying a behavior increases with how
reliably the behavior informs about the environment.
We can also extend the estimation model to use, in-

stead of the location of animals, their predicted loca-
tion. We would then find expressions like the ones in
this paper but for the number or density of individu-
als estimated for a later time. Consider for example
the case without non-social information, described in
Eq. 16 for two options and in Eq. 23 for more op-
tions. We can rewrite these equations as Pμ = Ωsnµ

with μ one of the options and Ω is the normalization,
Ω =

∑M
m=1 s

nm , where M is the number of options.
Then, we would have P (�x) = Ωsρ(�x;t+Δt) for the con-
tinuous case using prediction. Future positions at times
t + Δt (where Δt does not need to be constant) in
terms of variables at present time t would be given
by �x + �vΔt for animals moving at constant velocity
�v. Consider then a simple case of an animal located
at �x and estimating the future position of a compact
group at �xg and moving with velocity �vg. The deciding
animal would be predicted to move with a high proba-
bility in the direction (�xg(t)− �x(t))+Δt�vg(t). Estima-
tion of future locations thus naturally predicts in this
simple case a particular form of ‘attraction’ and ‘align-
ment’ forces of dynamical empirical models [45, 52] as
attraction to future positions, but in the general also
deviations from these simple rules.

Methods

Obtaining group behavior from the model
of an individual

The estimation rules presented above refer to a sin-
gle individual. To simulate the behavior of a group,
we use the following algorithm: The current individ-
ual decides between x and y. After the decision, we
recompute nx and ny and use the new values for the
next deciding individual. The undecided individuals
are only those that are waiting for their turn to decide.
We tested an alternative implementation in which indi-
viduals may remain undecided or in which two individ-
uals can decide simultaneously, obtaining no relevant
differences. The file ’groupsimulator.m’, provided as
Supporting Data, contains a Matlab function that runs
the algorithm described above. This function has been
used to generate all the theoretical results presented in
this paper.

Fits

We computed log likelihood as the logarithm of the
probability that the histograms come from the model.
We searched for the model parameters giving a higher
value of log likelihood, corresponding to a better fit.

Rejection of parameters

Parameters are rejected using the Bayesian informa-
tion criterion [48] for model selection, which takes into
account not only the goodness of fit of each model, but
also the number of parameters. According to this cri-
terion, among several models that have been fitted to
maximize log likelihood, one should select the one in
which

BIC = L− 1

2
k log(h) (24)

is largest, where L is the log likelihood for the model,
k is the number of parameters and h is the number of
measurements.
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Figure S1. Goodness of fit for different values of the reliability (s). Red: Symmetric case (plots in Fig. 2 in the main
text). Green: Case with different replicas at each side (plots in Fig. 3 in the main text. The ratios sr/sR for each case are fixed
in the values specified in the figure caption of Fig. 3 or Fig. S4). Blue: Asymmetric set-up with predator on one side (plots in
Fig. 4 in the main text. a = 9.5) a. Root mean squared error between the data and the probabilities predicted by the model. Grey
dashed line shows the mean RMSE for the three cases. The absolute values for each case depend on the shape of the data and are
not comparable, only the trends and the position of the minima should be compared. b. Logarithm of the probability that the
data come from the model. The height of each curve depends on the number of data for each experiment, only the trend and the
position of the maxima should be compared. Grey dashed line shows the sum of the three coloured lines, but shifted by 1000 so
that it fits on the scale. The peak of this global probability indicates the value of s that best fits the three datasets (s = 2.6).
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Figure S2. Illustration of the decision-making process. Bottom: Decision-making process, according to Eq. 16 in the
main text (with s = 2.5). Time runs from bottom to top. Each box represents a state with a given number of fish having already
decided x or y (nx : ny). Each state can lead to another two states in the following time step, depending on whether the focal
fish decides to go to x or y. The width of the lines connecting states is proportional to the probability of that transition (equal
to the probability of the prior state times the probability of the focal fish making the decision that leads to the later one). Top:
Probability of each state after 8 fish have made their decisions. a. Case with no replicas, in which the final outcome is U-shaped.
Note that the central states’ probability decreases as more fish make their decision, not because of an explicit effect of the total
number of fish in the probabilities, but because they accumulate more and more unlikely choices. b. Case with one replica going
to y (so initial state is already 0:1), in which the final outcome is J-shaped.
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Figure S3. Prediction of the dynamics for different values of the reliability parameter s and the group size.
The histogram for the probability of final states may have three main shapes: Bell shape, in which central states have maximum
probability, decreasing monotonously towards the edges. U shape, in which the central states have minimum probability, and
increases monotonously towards the edges. And an intermediate M shape, in which the maximum probability is at points located
between the center and the edges of the histogram. a. Shape of histogram as a function of s and the group size. For non-social
behavior (s = 1) the histogram is bell-shaped, due to combinatorial effects. However, a bell-shape is also compatible with social
animals, for a certain range of s and group size (white region on the bottom-left). For higher values of s and group size the
histograms are M-shaped (region coloured in black and blue). However, the observation of the M shape depends on the number
of bins, because the drop in probability near the edge or in the center may be masked if the binning is too coarse, producing a
bell-shaped or U-shaped histogram. This is an important practical issue, because the amount of data that can be collected rarely
allows more than 5 bins. The colorscale reflects the number of bins needed to observe the M shape (black has been reserved for
exactly 5 bins). For high values of s the histograms have U shape (white region on the top). Also, all the M-region above the
black zone becomes U when the binning is too coarse. There is also a tiny region below the black zone where the M shape becomes
a bell when the binning is too coarse. b. Dependence of the apparent shape on the number of bins: Top, 80 bins. Middle, 10
bins. Bottom, 5 bins. On the left, a probability that seems U-shaped for 5 bins, but is M shaped for a higher number of bins. On
the right, a probability that stays M-shaped for any number of bins. c-f. Dynamics of the probability as the individuals of the
group make their decisions. As Eq. 16 in main text does not depend on group size, this evolution can be understood as moving
horizontally in the map of box (a). For high s, the probability has U shape from the beginning, becoming more pronounced as more
individuals decide (box c, s = 2). There is a small interval of s where the probability has a small and shallow M-shaped transient
and then becomes U-shaped (box d, s = 1.62). For low s, there is a first stage with bell-shaped probability, then a second stage
with M-shaped probability and finally the U-shaped probability, that also becomes more pronounced as more individuals decide.
The first two stages are more pronounced (and therefore more easily observable) the lower the s (compare s = 1.35 in box e with
s = 1.05 in box f).
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Behaviour of each individual:

Py = a+
(m− a)(ny(t)− ny(t − T))k

nu(t)k + (ny(t)− ny(t − T))k + (nx(t)− nx(t − T))k

Py =
(
1 + s−Δn

)−1
Py =

(
1 + s−Δnf

f s−Δnr
r

)−1

Figure S4. Comparison between different models for the symmetric set-up. Experimentally measured statistics of final
configurations of fish choices from 20 experimental repetitions [41] (blue histograms). Red line: results from cognitive model in
Eq. 16 in the main text (s = 2.2; red region: 95% confidence interval). Green line: Enhanced model with different reliability for the
replicas (sf = 3, sr = 1.76). Blue line: Empirical model presented in Ref. [41]. Different graphs correspond to different stickleback
group sizes and different number of replicas going to x and y.
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x y Behaviour of each individual:

Type of
replicas

Large
Small
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Medium
Small
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Medium

Medium
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Proportion of fish following the most attractive replica

0 0.5 1 0 0.5 1

Py = a+
(m− a)(ny(t)− ny(t − T))k

nu(t)k + (ny(t)− ny(t − T))k + (nx(t)− nx(t − T))k

Step 1: Detect difference with probability p
bias

Step 2:

Py =
(
1 +

sr
sR
s−Δnf
f

)−1

Figure S5. Comparison between different models for the condition with two different replicas. Experimentally
measured statistics of final configurations of fish choices from 20 experimental repetitions [42] (blue histograms). Red line: results
from estimation model in Eq. 19 in the main text (sf = 2.9, sr/sR = 0.35, 0.7, 0.5, 0.52, 0.69, 0.75, 0.43, 0.55, 0.78, 0.43 for each
row from top to bottom; red region: 95% confidence interval). Blue line: Empirical model presented in Ref. [42]. Different graphs
correspond to different stickleback group sizes and different types of replicas going to x and y.
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x y
Behaviour of each individual:

Group size
1 2 4 8
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going to
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Py = ar +
(m− ar)(ny(t)− ny(t − T))k

nu(t)k + (ny(t)− ny(t − T))k + (nx(t)− nx(t − T))k

Py =
(
1 + as−Δn

)−1

Py =
(
1 + asnfxfx s

nfy
fy s

nry
ry

)−1

Figure S6. Comparison between different models in the asymmetrical set-up. Experimentally measured statistics of
final configurations of fish choices from 20 experimental repetitions [41] (blue histograms). Red line: results from estimation model
in Eq. 21 in the main text (s = 2.6, a = 9.5; red region: 95% confidence interval). Green line: Enhanced model with different
reliability for the fish going to different locations and for the replicas (a = 5.5, sfx = 50, sfy = 2/3, sry = 0.36. srx has no effect
because there are no replicas going to x). Blue line: Empirical model presented in Ref. [41]. Different graphs correspond to different
stickleback group sizes and different number of replicas going to y.
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Supporting text: Model for more
than 2 options

We present a derivation of the model for the more gen-
eral case ofM different options (instead of the 2 options
used in the main text). We also discuss some particu-
lar cases that give simple expressions while still widely
applicable.

General model for M options

Let M be the number of possible options, ym, m =
1 . . .M . Each individual estimates the probability that
each option is the best one, using its non-social infor-
mation (c) and the behavior of the other individuals
(B). So for one given option, say yμ, we want to com-
pute

P (Yμ|c, B), (S1)

where Yμ stands for ’yμ is the best option’. We can
compute the probability in Eq. S1 using Bayes’ theo-
rem,

P (Yμ|c, B) =
P (B|Yμ, c)P (Yμ|c)∑M

m=1 P (B|Ym, c)P (Ym|c) . (S2)

Dividing numerator and denominator by the numera-
tor, we get

P (Yμ|c, B) =
1∑M

m=1 amμSmμ

, (S3)

where

amμ =
P (Ym|c)
P (Yμ|c) (S4)

contains only non-social information, and

Smμ =
P (B|Ym, c)

P (B|Yμ, c)
(S5)

contains the social information. Note that each term
of the summation preserves the multiplicative relation
between social and non-social information that was also
apparent in Eq. 3 of the main text. There may be M−
1 independent non-social parameters amμ in the case
that no two options have equal non-social information.
But usually this will not be the case, and the number
of independent non-social parameters will be lower.
Now we assume independence among behaviors (Eq.

6 in main text), and group all possible behaviors in
K classes, {βk}Kk=1 (Eq. 7 in main text). These two
assumptions transform Eq. S5 into

Smμ =
K∏

k=1

snk

k,mμ, (S6)

where nk is the number of individuals performing be-
havior βk, and

sk,mμ =
P (βk|Ym, c)

P (βk|Yμ, c)
(S7)

are the reliability parameters for behavior βk with re-
spect to options ym and yμ. There may be up to
K(M − 1) independent reliability parameters but usu-
ally they will not be all independent.
In summary, from Equations S3 and 7 we have that

P (Yμ|c, B) =

(
M∑

m=1

amμ

K∏
k=1

snk

k,mμ

)−1

. (S8)

This equation summarizes the general model appli-
cable to any kind of experiment. In the following sec-
tions we consider two particular cases with a much sim-
pler expression.

One basic reliability parameter

The general model in Eq. S8 depends in general on
K(M − 1) independent reliability parameters sk,mμ.
Here we derive the model for a particular case in which
there is only one reliability parameter, s.
First, we consider classes of behaviors (from now on

we call them just ‘behaviors’) that simply consist of
choosing a given option. If for example the options are
different places, behaviors would be going to each of
those places. Therefore, the number of possible behav-
iors is the same as the number of options, K = M . We
use the convention that βj is ‘choosing option yj ’. Note
that when a behavior is not informative (i.e. its reli-
ability parameter is 1) it has no impact on the model
in Eq. S8. Therefore, considering this set of behaviors
is equivalent to assuming that all other behaviors have
reliability parameter equal to 1.
We further assume that P (βk|Ym, c) only depends on

whether k = m or k �= m, so that

P (βk|Yk, c) = P (βl|Yl, c)

P (βk|Ym, c) = P (βl|Yp, c), k �= m, l �= p
(S9)

Note that P (βk|Yk, c) is the probability that an-
other individual makes the correct choice, and
P (βk|Ym, c)with k �= m is the probability that it makes
a wrong choice. So this assumption means that the
probability of making the correct choice is the same
regardless of which option is actually the correct one.
In the case of symmetric choices, in which non-social
information c is the same for all options, this relation
will hold automatically, not being an extra assump-
tion. It is likely that it also holds for many asymmetric
choices. For example, the results for the asymmetric
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set-up presented in the main text suggest that it holds
in that case. We define

pc ≡ P (βk|Yk, c)

pf ≡ P (βk|Ym, c), k �= m.
(S10)

As it only matters whether the behavior matches the
correct choice or not, there are only four distinct types
of reliability parameters sk,mμ (Eq. S7):

sk,kk =
P (βk|Yk, c)

P (βk|Yk, c)
=

pc
pc

= 1

sk,ml =
P (βk|Ym, c)

P (βk|Yl, c)
=

pf
pf

= 1, k �= m, k �= l

sk,km =
P (βk|Yk, c)

P (βk|Ym, c)
=

pc
pf

= s, k �= m

sk,mk =
P (βk|Ym, c)

P (βk|Yk, c)
=

pf
pc

=
1

s
, k �= m,

(S11)
where

s ≡ pc
pf

(S12)

is the basic reliability parameter, equal to the proba-
bility that another individual makes the correct choice
over the probability that it makes a mistake, for any
behavior and for any individual. We regroup the terms
inEq. S8 so that it reflects the different types of sk,mμ

(Eq. S11), and get

P (Yμ|c, B) =(
M∑

m=1

amμs
nm
m,mμs

nµ
μ,mμ

K∏
k=1
k �=m
k �=μ

snk

k,mμ

)−1

. (S13)

Using the relations in Eq. S11 we have that

P (Yμ|c, B) =

(
M∑

m=1

amμs
−(nµ−nm)

)−1

. (S14)

Note that the term m = μ is always equal to 1, so
Eq. S14 is identical to

P (Yμ|c, B) =

(
1 +

M∑
m=1
m �=μ

amμs
−(nµ−nm)

)−1

, (S15)

that has the same structure as the equations presented
in the main text.

Symmetric case

In the special case that all options are indistinguishable
using non-social information alone (symmetric case),

55
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X
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Figure S7. Probability of choosing one of the options for the
3-choice symmetric case.

all non-social parameters amμ are equal 1 and Eq. S15
becomes

P (Yμ|c, B) =

(
1 +

M∑
m=1
m �=μ

s−(nµ−nm)

)−1

. (S16)

We recall that in this case Eq. S9 holds automatically,
not being an extra assumption.
In the particular case of 3 options, x, y, z, we have

P (X |c, B) =
(
1 + s−(nx−ny) + s−(nx−nz)

)−1

, (S17)

and the corresponding expressions for P (Y |c, B) and
P (Z|c, B). Fig. S7 shows P (X |c, B) in terms of its two
effective variables, nx − ny and nx − nz (Eq. S17).
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