11 research outputs found

    Biomarker Records Associated with Mass Extinction Events

    No full text
    The history of life on Earth is punctuated by a series of mass extinction episodes that vary widely in their magnitude, duration, and cause. Biomarkers are a powerful tool for the reconstruction of historical environmental conditions and can therefore provide insights into the cause and responses to ancient extinction events. In examining the five largest mass extinctions in the geological record, investigators have used biomarkers to elucidate key processes such as eutrophy, euxinia, ocean acidification, changes in hydrological balance, and changes in atmospheric CO2. By using these molecular fossils to understand how Earth and its ecosystems have responded to unusual environmental activity during these extinctions, models can be made to predict how Earth will respond to future changes in its climate

    Multiple factors in the origin of the Cretaceous/Tertiary boundary: The role of environmental stress and Deccan Trap volcanism

    No full text

    Multiple factors in the origin of the Cretaceous/Tertiary boundary: the role of environmental stress and Deccan Trap volcanism

    No full text

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    The ATLAS Collaboration

    No full text

    Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in root s=7 TeV proton-proton collisions

    No full text

    Performance of the ATLAS Detector using First Collision Data

    Get PDF
    More than half a million minimum-bias events of LHC collision data were collected by the ATLAS experiment in December 2009 at centre-of-mass energies of 0.9 TeV and 2.36 TeV. This paper reports on studies of the initial performance of the ATLAS detector from these data. Comparisons between data and Monte Carlo predictions are shown for distributions of several track- and calorimeter-based quantities. The good performance of the ATLAS detector in these first data gives confidence for successful running at higher energies
    corecore