155 research outputs found

    Oceanic inside corner detachments of the Limassol Forest area, Troodos ophiolite, Cyprus

    Get PDF
    Flat-lying extensional detachment faults have been imaged in the inside corner regions of ridge-transform intersections on the Mid-Atlantic Ridge. Exposed detachment surfaces are 10 km or more across, and are corrugated in the direction of spreading, as are continental detachments. Beneath the detachments lie core complexes of peridotite and gabbro; these are overlain by blocks of crustal material. We argue here that similar detachments are an essential component of the Limassol Forest area of the Troodos ophiolite in Cyprus, which lies south of the Arakapas Fault zone, previously recognized as a palaco-transform fault, and here interpreted as a transform fault that evolved into a fracture zone. In the Limassol Forest, core complexes of mantle peridotite can be shown to have been exposed at the sea floor, or to have been covered by overlapping crustal blocks, separated from the peridotite core and from each other by low-angle extensional faults. The extension can be shown to have occured shortly after crustal construction, and the already extended terrain was then intruded by swarms of dykes and plutons. We interpret these relations as arising when crust is constructed in an inside corner area, extended by detachment faulting, deformed further during slip along the transform, and then intruded by new magma as it passes the second spreading centre. The structurally deeper parts of the crustal blocks that overlie the detachment lie broadly towards the west, indicating that the spreading axis lay in that direction. The ophiolite north of the transform is much less extended, and we interpret this as a section of outside corner crust. In this interpretation, the Troodos ophiolite formed to the east (in its current orientation) of a ridge-transform-ridge intersection, in which the transform had a dextral offset and sinistral slip. The part of the ophiolite that forms the Limassol Forest was produced at the western inside corner, and spread eastward until it passed the second spreading axis, at which point the ophiolite north of the Arakapas Fault was created and welded to the Limassol Forest when the transform became a fracture zone.published_or_final_versio

    Advancing Drug Innovation for Neglected Diseases—Criteria for Lead Progression

    Get PDF
    The current drug R&D pipeline for most neglected diseases remains weak, and unlikely to support registration of novel drug classes that meet desired target product profiles in the short term. This calls for sustained investment as well as greater emphasis in the risky upstream drug discovery. Access to technologies, resources, and strong management as well as clear compound progression criteria are factors in the successful implementation of any collaborative drug discovery effort. We discuss how some of these factors have impacted drug discovery for tropical diseases within the past four decades, and highlight new opportunities and challenges through the virtual North–South drug discovery network as well as the rationale for greater participation of institutions in developing countries in product innovation. A set of criteria designed to facilitate compound progression from screening hits to drug candidate selection is presented to guide ongoing efforts

    Hydrogel coated monoliths for enzymatic hydrolysis of penicillin G

    Get PDF
    The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l−1 PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml−1 gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml−1 gel. The observed volumetric reaction rate in the MLR was 0.79 mol s−1 m−3monolith. Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s−1 m−3catalyst), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different reactor configuration including an optimal pH profile is required to increase the reactor performance. The monolithic stirrer reactor would be an interesting alternative to improve the performance of the monolith-PGA combination

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Emotional Engineers: Toward Morally Responsible Design

    Get PDF
    Engineers are normally seen as the archetype of people who make decisions in a rational and quantitative way. However, technological design is not value neutral. The way a technology is designed determines its possibilities, which can, for better or for worse, have consequences for human wellbeing. This leads various scholars to the claim that engineers should explicitly take into account ethical considerations. They are at the cradle of new technological developments and can thereby influence the possible risks and benefits more directly than anybody else. I have argued elsewhere that emotions are an indispensable source of ethical insight into ethical aspects of risk. In this paper I will argue that this means that engineers should also include emotional reflection into their work. This requires a new understanding of the competencies of engineers: they should not be unemotional calculators; quite the opposite, they should work to cultivate their moral emotions and sensitivity, in order to be engaged in morally responsible engineering

    Quantitative Modeling of GRK-Mediated ÎČ2AR Regulation

    Get PDF
    We developed a unified model of the GRK-mediated ÎČ2 adrenergic receptor (ÎČ2AR) regulation that simultaneously accounts for six different biochemical measurements of the system obtained over a wide range of agonist concentrations. Using a single deterministic model we accounted for (1) GRK phosphorylation in response to various full and partial agonists; (2) dephosphorylation of the GRK site on the ÎČ2AR; (3) ÎČ2AR internalization; (4) recycling of the ÎČ2AR post isoproterenol treatment; (5) ÎČ2AR desensitization; and (6) ÎČ2AR resensitization. Simulations of our model show that plasma membrane dephosphorylation and recycling of the phosphorylated receptor are necessary to adequately account for the measured dephosphorylation kinetics. We further used the model to predict the consequences of (1) modifying rates such as GRK phosphorylation of the receptor, arrestin binding and dissociation from the receptor, and receptor dephosphorylation that should reflect effects of knockdowns and overexpressions of these components; and (2) varying concentration and frequency of agonist stimulation “seen” by the ÎČ2AR to better mimic hormonal, neurophysiological and pharmacological stimulations of the ÎČ2AR. Exploring the consequences of rapid pulsatile agonist stimulation, we found that although resensitization was rapid, the ÎČ2AR system retained the memory of the previous stimuli and desensitized faster and much more strongly in response to subsequent stimuli. The latent memory that we predict is due to slower membrane dephosphorylation, which allows for progressive accumulation of phosphorylated receptor on the surface. This primes the receptor for faster arrestin binding on subsequent agonist activation leading to a greater extent of desensitization. In summary, the model is unique in accounting for the behavior of the ÎČ2AR system across multiple types of biochemical measurements using a single set of experimentally constrained parameters. It also provides insight into how the signaling machinery can retain memory of prior stimulation long after near complete resensitization has been achieved

    Macrocheles species (Acari: Macrochelidae) associated with human corpses in Europe

    Get PDF
    The biology of macrochelid mites might offer new venues for the interpretation of the environmental conditions surrounding human death and decomposition. Three human corpses, one from Sweden and two from Spain, have been analysed for the occurrence of Macrochelidae species. Macrocheles muscaedomesticae females were associated with a corpse that was found in a popular beach area of southeast Spain. Their arrival coincides with the occurrence of one of their major carrier species, the filth fly Fannia scalaris, the activity of which peaks during mid-summer. M. glaber specimens were collected from a corpse in a shallow grave in a forest in Sweden at the end of summer, concurrent with the arrival of beetles attracted by odours from the corpse. M. perglaber adults were sampled from a corpse found indoors in the rural surroundings of Granada city, Spain. The phoretic behaviour of this species is similar to that of M. glaber, but being more specific to Scarabaeidae and Geotrupidae dung beetles, most of which favour human faeces. M. muscaedomesticae is known from urban and rural areas and poultry farms; M. glaber from outdoors, particularly the countryside; while M. perglaber from outdoor, rural, and remote, potentially mountainous locations. M. muscaedomesticae and M. perglaber are reported for the first time from the Iberian Peninsula. This is the first record of M. perglaber from human remains

    Macrocheles species (Acari: Macrochelidae) associated with human corpses in Europe

    Get PDF
    The biology of macrochelid mites might offer new venues for the interpretation of the environmental conditions surrounding human death and decomposition. Three human corpses, one from Sweden and two from Spain, have been analysed for the occurrence of Macrochelidae species. Macrocheles muscaedomesticae females were associated with a corpse that was found in a popular beach area of southeast Spain. Their arrival coincides with the occurrence of one of their major carrier species, the filth fly Fannia scalaris, the activity of which peaks during mid-summer. M. glaber specimens were collected from a corpse in a shallow grave in a forest in Sweden at the end of summer, concurrent with the arrival of beetles attracted by odours from the corpse. M. perglaber adults were sampled from a corpse found indoors in the rural surroundings of Granada city, Spain. The phoretic behaviour of this species is similar to that of M. glaber, but being more specific to Scarabaeidae and Geotrupidae dung beetles, most of which favour human faeces. M. muscaedomesticae is known from urban and rural areas and poultry farms; M. glaber from outdoors, particularly the countryside; while M. perglaber from outdoor, rural, and remote, potentially mountainous locations. M. muscaedomesticae and M. perglaber are reported for the first time from the Iberian Peninsula. This is the first record of M. perglaber from human remains

    A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI

    Get PDF
    • 

    corecore