141 research outputs found

    Quantitative trait loci affecting reproductive phenology in peach

    Get PDF
    Background: The reproductive phenology of perennial plants in temperate climates is largely conditioned by the duration of bud dormancy, and fruit developmental processes. Bud dormancy release and bud break depends on the perception of cumulative chilling and heat during the bud development. The objective of this work was to identify new quantitative trait loci (QTLs) associated to temperature requirements for bud dormancy release and flowering and to fruit harvest date, in a segregating population of peach. Results: We have identified QTLs for nine traits related to bud dormancy, flowering and fruit harvest in an intraspecific hybrid population of peach in two locations differing in chilling time accumulation. QTLs were located in a genetic linkage map of peach based on single nucleotide polymorphism (SNP) markers for eight linkage groups (LGs) of the peach genome sequence. QTLs for chilling requirements for dormancy release and blooming clustered in seven different genomic regions that partially coincided with loci identified in previous works. The most significant QTL for chilling requirements mapped to LG1, close to the evergrowing locus. QTLs for heat requirement related traits were distributed in nine genomic regions, four of them co-localizing with QTLs for chilling requirement trait. Two major loci in LG4 and LG6 determined fruit harvest time. Conclusions: We identified QTLs associated to nine traits related to the reproductive phenology in peach. A search of candidate genes for these QTLs rendered different genes related to flowering regulation, chromatin modification and hormone signalling. A better understanding of the genetic factors affecting crop phenology might help scientists and breeders to predict changes in genotype performance in a context of global climate change.We thank Matilde Gonzalez for technical assistance. This work was supported by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA)-FEDER (grant no. RTA2007-00060), and the Ministry of Science and Innovation of Spain (grant no. AGL2010-20595).Romeu, J.; Monforte Gilabert, AJ.; Sánchez, G.; Granell Richart, A.; Garcia-Brunton, J.; Badenes, M.; Rios Garcia, G. (2014). Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biology. 14(52):1-16. https://doi.org/10.1186/1471-2229-14-52S1161452Rohde, A., & Bhalerao, R. P. (2007). Plant dormancy in the perennial context. Trends in Plant Science, 12(5), 217-223. doi:10.1016/j.tplants.2007.03.012Coville, F. V. (1920). The Influence of Cold in Stimulating the Growth of Plants. Proceedings of the National Academy of Sciences, 6(7), 434-435. doi:10.1073/pnas.6.7.434Chuine, I. (2010). Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1555), 3149-3160. doi:10.1098/rstb.2010.0142Hänninen, H., & Tanino, K. (2011). Tree seasonality in a warming climate. Trends in Plant Science, 16(8), 412-416. doi:10.1016/j.tplants.2011.05.001Yu, H., Luedeling, E., & Xu, J. (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 107(51), 22151-22156. doi:10.1073/pnas.1012490107Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., … van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684-692. doi:10.1016/j.tplants.2010.09.008Rohde, A., Storme, V., Jorge, V., Gaudet, M., Vitacolonna, N., Fabbrini, F., … Bastien, C. (2010). Bud set in poplar - genetic dissection of a complex trait in natural and hybrid populations. New Phytologist, 189(1), 106-121. doi:10.1111/j.1469-8137.2010.03469.xFabbrini, F., Gaudet, M., Bastien, C., Zaina, G., Harfouche, A., Beritognolo, I., … Sabatti, M. (2012). Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar. BMC Plant Biology, 12(1), 47. doi:10.1186/1471-2229-12-47Celton, J.-M., Martinez, S., Jammes, M.-J., Bechti, A., Salvi, S., Legave, J.-M., & Costes, E. (2011). Deciphering the genetic determinism of bud phenology in apple progenies: a new insight into chilling and heat requirement effects on flowering dates and positional candidate genes. New Phytologist, 192(2), 378-392. doi:10.1111/j.1469-8137.2011.03823.xQuilot, B., Wu, B. H., Kervella, J., G�nard, M., Foulongne, M., & Moreau, K. (2004). QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theoretical and Applied Genetics, 109(4), 884-897. doi:10.1007/s00122-004-1703-zDirlewanger, E., Quero-García, J., Le Dantec, L., Lambert, P., Ruiz, D., Dondini, L., … Arús, P. (2012). Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity, 109(5), 280-292. doi:10.1038/hdy.2012.38Olukolu, B. A., Trainin, T., Fan, S., Kole, C., Bielenberg, D. G., Reighard, G. L., … Holland, D. (2009). Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniacaL.). Genome, 52(10), 819-828. doi:10.1139/g09-050Fan, S., Bielenberg, D. G., Zhebentyayeva, T. N., Reighard, G. L., Okie, W. R., Holland, D., & Abbott, A. G. (2009). Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytologist, 185(4), 917-930. doi:10.1111/j.1469-8137.2009.03119.xJiménez, S., Li, Z., Reighard, G. L., & Bielenberg, D. G. (2010). Identification of genes associated with growth cessation and bud dormancy entrance using a dormancy-incapable tree mutant. BMC Plant Biology, 10(1), 25. doi:10.1186/1471-2229-10-25Verde, I., Bassil, N., Scalabrin, S., Gilmore, B., Lawley, C. T., Gasic, K., … Peace, C. (2012). Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm. PLoS ONE, 7(4), e35668. doi:10.1371/journal.pone.0035668Leida, C., Terol, J., Marti, G., Agusti, M., Llacer, G., Badenes, M. L., & Rios, G. (2010). Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiology, 30(5), 655-666. doi:10.1093/treephys/tpq008Leida, C., Conesa, A., Llácer, G., Badenes, M. L., & Ríos, G. (2011). Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytologist, 193(1), 67-80. doi:10.1111/j.1469-8137.2011.03863.xHolec, S., & Berger, F. (2011). Polycomb Group Complexes Mediate Developmental Transitions in Plants. Plant Physiology, 158(1), 35-43. doi:10.1104/pp.111.186445Pandey, R. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research, 30(23), 5036-5055. doi:10.1093/nar/gkf660Verde, I., Abbott, A. G., Scalabrin, S., Jung, S., Shu, S., … Grimwood, J. (2013). The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 45(5), 487-494. doi:10.1038/ng.2586Jiménez, S., Lawton-Rauh, A. L., Reighard, G. L., Abbott, A. G., & Bielenberg, D. G. (2009). Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biology, 9(1), 81. doi:10.1186/1471-2229-9-81Li, Z., Reighard, G. L., Abbott, A. G., & Bielenberg, D. G. (2009). Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. Journal of Experimental Botany, 60(12), 3521-3530. doi:10.1093/jxb/erp195Jiménez, S., Reighard, G. L., & Bielenberg, D. G. (2010). Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Molecular Biology, 73(1-2), 157-167. doi:10.1007/s11103-010-9608-5Yamane, H., Ooka, T., Jotatsu, H., Hosaka, Y., Sasaki, R., & Tao, R. (2011). Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. Journal of Experimental Botany, 62(10), 3481-3488. doi:10.1093/jxb/err028Leida, C., Conejero, A., Arbona, V., Gómez-Cadenas, A., Llácer, G., Badenes, M. L., & Ríos, G. (2012). Chilling-Dependent Release of Seed and Bud Dormancy in Peach Associates to Common Changes in Gene Expression. PLoS ONE, 7(5), e35777. doi:10.1371/journal.pone.0035777Horvath, D. P., Sung, S., Kim, D., Chao, W., & Anderson, J. (2010). Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Molecular Biology, 73(1-2), 169-179. doi:10.1007/s11103-009-9596-5Sasaki, R., Yamane, H., Ooka, T., Jotatsu, H., Kitamura, Y., Akagi, T., & Tao, R. (2011). Functional and Expressional Analyses of PmDAM Genes Associated with Endodormancy in Japanese Apricot. Plant Physiology, 157(1), 485-497. doi:10.1104/pp.111.181982Hemming, M. N., & Trevaskis, B. (2011). Make hay when the sun shines: The role of MADS-box genes in temperature-dependant seasonal flowering responses. Plant Science, 180(3), 447-453. doi:10.1016/j.plantsci.2010.12.001He, Y. (2012). Chromatin regulation of flowering. Trends in Plant Science, 17(9), 556-562. doi:10.1016/j.tplants.2012.05.001Santamaría, M., Hasbún, R., Valera, M., Meijón, M., Valledor, L., Rodríguez, J. L., … Rodríguez, R. (2009). Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. Journal of Plant Physiology, 166(13), 1360-1369. doi:10.1016/j.jplph.2009.02.014Santamaría, M. E., Rodríguez, R., Cañal, M. J., & Toorop, P. E. (2011). Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Annals of Botany, 108(3), 485-498. doi:10.1093/aob/mcr185Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., & Abrams, S. R. (2010). Abscisic Acid: Emergence of a Core Signaling Network. Annual Review of Plant Biology, 61(1), 651-679. doi:10.1146/annurev-arplant-042809-112122Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.xHorvath, D. P., Anderson, J. V., Chao, W. S., & Foley, M. E. (2003). Knowing when to grow: signals regulating bud dormancy. Trends in Plant Science, 8(11), 534-540. doi:10.1016/j.tplants.2003.09.013Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., … Rohde, A. (2007). A Molecular Timetable for Apical Bud Formation and Dormancy Induction in Poplar. The Plant Cell, 19(8), 2370-2390. doi:10.1105/tpc.107.052811Melzer, S., Kampmann, G., Chandler, J., & Apel, K. (1999). FPF1 modulates the competence to flowering in Arabidopsis. The Plant Journal, 18(4), 395-405. doi:10.1046/j.1365-313x.1999.00461.xSchubert, D., Primavesi, L., Bishopp, A., Roberts, G., Doonan, J., Jenuwein, T., & Goodrich, J. (2006). Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. The EMBO Journal, 25(19), 4638-4649. doi:10.1038/sj.emboj.7601311Zemach, A., Kim, M. Y., Hsieh, P.-H., Coleman-Derr, D., Eshed-Williams, L., Thao, K., … Zilberman, D. (2013). The Arabidopsis Nucleosome Remodeler DDM1 Allows DNA Methyltransferases to Access H1-Containing Heterochromatin. Cell, 153(1), 193-205. doi:10.1016/j.cell.2013.02.033Sridha, S., & Wu, K. (2006). Identification ofAtHD2Cas a novel regulator of abscisic acid responses in Arabidopsis. The Plant Journal, 46(1), 124-133. doi:10.1111/j.1365-313x.2006.02678.xKim, D.-H., & Sung, S. (2010). The Plant Homeo Domain finger protein, VIN3-LIKE 2, is necessary for photoperiod-mediated epigenetic regulation of the floral repressor, MAF5. Proceedings of the National Academy of Sciences, 107(39), 17029-17034. doi:10.1073/pnas.1010834107Jiang, D., Kong, N. C., Gu, X., Li, Z., & He, Y. (2011). Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development. PLoS Genetics, 7(3), e1001330. doi:10.1371/journal.pgen.1001330Lu, F., Cui, X., Zhang, S., Jenuwein, T., & Cao, X. (2011). Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nature Genetics, 43(7), 715-719. doi:10.1038/ng.854Yu, C.-W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., … Wu, K. (2011). HISTONE DEACETYLASE6 Interacts with FLOWERING LOCUS D and Regulates Flowering in Arabidopsis. Plant Physiology, 156(1), 173-184. doi:10.1104/pp.111.174417Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F., & Meyerowitz, E. M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell, 69(5), 843-859. doi:10.1016/0092-8674(92)90295-nYang, Z., Tian, L., Latoszek-Green, M., Brown, D., & Wu, K. (2005). Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Molecular Biology, 58(4), 585-596. doi:10.1007/s11103-005-7294-5Bonghi, C., Trainotti, L., Botton, A., Tadiello, A., Rasori, A., Ziliotto, F., … Ramina, A. (2011). A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biology, 11(1), 107. doi:10.1186/1471-2229-11-107Wang, A., Tan, D., Takahashi, A., Zhong Li, T., & Harada, T. (2007). MdERFs, two ethylene-response factors involved in apple fruit ripening. Journal of Experimental Botany, 58(13), 3743-3748. doi:10.1093/jxb/erm224Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A. J., King, G. J., … Seymour, G. B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genetics, 38(8), 948-952. doi:10.1038/ng1841Pirona, R., Eduardo, I., Pacheco, I., Da Silva Linge, C., Miculan, M., Verde, I., … Rossini, L. (2013). Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biology, 13(1), 166. doi:10.1186/1471-2229-13-166Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K., & Takahashi, H. (2006). Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism. The Plant Cell, 18(11), 3235-3251. doi:10.1105/tpc.106.046458Seymour, G., Poole, M., Manning, K., & King, G. J. (2008). Genetics and epigenetics of fruit development and ripening. Current Opinion in Plant Biology, 11(1), 58-63. doi:10.1016/j.pbi.2007.09.003Sánchez, G., Besada, C., Badenes, M. L., Monforte, A. J., & Granell, A. (2012). A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit. PLoS ONE, 7(6), e38992. doi:10.1371/journal.pone.0038992Lander, E. S., Green, P., Abrahamson, J., Barlow, A., Daly, M. J., Lincoln, S. E., & Newburg, L. (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2), 174-181. doi:10.1016/0888-7543(87)90010-3Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78. doi:10.1093/jhered/93.1.7

    Diversity of Bacteria Associated with Bursaphelenchus xylophilus and Other Nematodes Isolated from Pinus pinaster Trees with Pine Wilt Disease

    Get PDF
    The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one Gram-positive strain (Actinobacteria) belonged to the Gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference

    Additive QTLs on three chromosomes control flowering time in woodland strawberry (Fragaria vesca L.)

    Get PDF
    Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.Peer reviewe

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Measurement of the B0s →J/ψη lifetime

    Get PDF
    Using a data set corresponding to an integrated luminosity of 3 fb−1, collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0→J/ψη decay mode, τeff, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst) ps. Assuming CP conservation, τeff corresponds to the lifetime of the light Bs0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode

    Observation of B(s)0→J/ψpp¯ decays and precision measurements of the B(s)0 masses

    Get PDF
    The first observation of the decays B 0 ( s ) → J / ψ p ¯ p is reported, using proton-proton collision data corresponding to an integrated luminosity of 5.2     fb − 1 , collected with the LHCb detector. These decays are suppressed due to limited available phase space, as well as due to Okubo-Zweig-Iizuka or Cabibbo suppression. The measured branching fractions are B ( B 0 → J / ψ p ¯ p ) = [ 4.51 ± 0.40 ( stat ) ± 0.44 ( syst ) ] × 10 − 7 , B ( B 0 s → J / ψ p ¯ p ) = [ 3.58 ± 0.19 ( stat ) ± 0.39 ( syst ) ] × 10 − 6 . For the B 0 s meson, the result is much higher than the expected value of O ( 10 − 9 ) . The small available phase space in these decays also allows for the most precise single measurement of both the B 0 mass as 5279.74 ± 0.30 ( stat ) ± 0.10 ( syst )     MeV and the B 0 s mass as 5366.85 ± 0.19 ( stat ) ± 0.13 ( syst )     MeV
    corecore