69 research outputs found

    Acute effects of orexigenic antipsychotic drugs on lipid and carbohydrate metabolism in rat

    Get PDF
    This study aims to investigate whether orexigenic antipsychotic drugs may induce dyslipidemia and glucose disturbances in female rats through direct perturbation of metabolically active peripheral tissues, independent of prior weight gain. Methods In the current study, we examined whether a single intraperitoneal injection of clozapine or olanzapine induced metabolic disturbances in adult female outbred Sprague–Dawley rats. Serum glucose and lipid parameters were measured during time-course experiments up to 48 h. Real-time quantitative PCR was used to measure specific transcriptional alterations in lipid and carbohydrate metabolism in adipose tissue depots or in the liver. Results Our results demonstrated that acute administration of clozapine or olanzapine induced a rapid, robust elevation of free fatty acids and glucose in serum, followed by hepatic accumulation of lipids evident after 12–24 h. These metabolic disturbances were associated with biphasic patterns of gluconeogenic and lipid-related gene expression in the liver and in white adipose tissue depots. Conclusion Our results support that clozapine and olanzapine are associated with primary effects on carbohydrate and lipid metabolism associated with transcriptional changes in metabolically active peripheral tissues prior to the development of drug-induced weight gain

    Results from the dissemination of an evidence-based telephone-delivered intervention for healthy lifestyle and weight loss: the Optimal Health Program

    Get PDF
    Despite proven efficacy, there are few published evaluations of telephone-delivered interventions targeting physical activity, healthy eating, and weight loss in community dissemination contexts. This study aims to evaluate participant and program outcomes from the Optimal Health Program, a telephone-delivered healthy lifestyle and weight loss program provided by a primary health care organization. Dissemination study used a single-group, repeated measures design; outcomes were assessed at 6-month (mid-program; n = 166) and 12-month (end of program; n = 88) using paired analyses. The program reached a representative sample of at-risk, primary care patients, with 56 % withdrawing before program completion. Among completers, a statistically significant improvement between baseline and end of program was observed for weight [mean change (SE) −5.4 (7.0) kg] and waist circumference [−4.8 (9.7) cm], underpinned by significant physical activity and dietary change. Findings suggest that telephone-delivered weight loss and healthy lifestyle programs can provide an effective model for use in primary care settings, but participant retention remains a challenge

    Comparing motivational, self-regulatory and habitual processes in a computer-tailored physical activity intervention in hospital employees - Protocol for the PATHS randomised controlled trial

    Get PDF
    Background: Most people do not engage in sufficient physical activity to confer health benefits and to reduce risk of chronic disease. Healthcare professionals frequently provide guidance on physical activity, but often do not meet guideline levels of physical activity themselves. The main objective of this study is to develop and test the efficacy of a tailored intervention to increase healthcare professionals' physical activity participation and quality of life, and to reduce work-related stress and absenteeism. This is the first study to compare the additive effects of three forms of a tailored intervention using different techniques from behavioural theory, which differ according to their focus on motivational, self-regulatory and/or habitual processes. Methods/Design: Healthcare professionals (N = 192) will be recruited from four hospitals in Perth, Western Australia, via email lists, leaflets, and posters to participate in the four group randomised controlled trial. Participants will be randomised to one of four conditions: (1) education only (non-tailored information only), (2) education plus intervention components to enhance motivation, (3) education plus components to enhance motivation and self-regulation, and (4) education plus components to enhance motivation, self-regulation and habit formation. All intervention groups will receive a computer-tailored intervention administered via a web-based platform and will receive supporting text-messages containing tailored information, prompts and feedback relevant to each condition. All outcomes will be assessed at baseline, and at 3-month follow-up. The primary outcome assessed in this study is physical activity measured using activity monitors. Secondary outcomes include: quality of life, stress, anxiety, sleep, and absenteeism. Website engagement, retention, preferences and intervention fidelity will also be evaluated as well as potential mediators and moderators of intervention effect. Discussion: This is the first study to examine a tailored, technology-supported intervention aiming to increase physical activity in healthcare professionals. The study will evaluate whether including additional theory-based behaviour change techniques aimed at promoting motivation, self-regulation and habit will lead to increased physical activity participation relative to information alone. The online platform developed in this study has potential to deliver efficient, scalable and personally-relevant intervention that can be translated to other occupational settings. Trial registration: Australian New-Zealand Clinical Trial Registry: ACTRN12616000462482, submitted 29/03/2016, prospectively registered 8/04/2016

    The role of hypothalamic H1 receptor antagonism in antipsychotic-induced weight gain

    Get PDF
    Treatment with second generation antipsychotics (SGAs), notably olanzapine and clozapine, causes severe obesity side effects. Antagonism of histamine H1 receptors has been identified as a main cause of SGA-induced obesity, but the molecular mechanisms associated with this antagonism in different stages of SGA-induced weight gain remain unclear. This review aims to explore the potential role of hypothalamic histamine H1 receptors in different stages of SGA-induced weight gain/obesity and the molecular pathways related to SGA-induced antagonism of these receptors. Initial data have demonstrated the importance of hypothalamic H1 receptors in both short- and long-term SGA-induced obesity. Blocking hypothalamic H1 receptors by SGAs activates AMP-activated protein kinase (AMPK), a well-known feeding regulator. During short-term treatment, hypothalamic H1 receptor antagonism by SGAs may activate the AMPK—carnitine palmitoyltransferase 1 signaling to rapidly increase caloric intake and result in weight gain. During long-term SGA treatment, hypothalamic H1 receptor antagonism can reduce thermogenesis, possibly by inhibiting the sympathetic outflows to the brainstem rostral raphe pallidus and rostral ventrolateral medulla, therefore decreasing brown adipose tissue thermogenesis. Additionally, blocking of hypothalamic H1 receptors by SGAs may also contribute to fat accumulation by decreasing lipolysis but increasing lipogenesis in white adipose tissue. In summary, antagonism of hypothalamic H1 receptors by SGAs may time-dependently affect the hypothalamus-brainstem circuits to cause weight gain by stimulating appetite and fat accumulation but reducing energy expenditure. The H1 receptor and its downstream signaling molecules could be valuable targets for the design of new compounds for treating SGA-induced weight gain/obesity

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Structural determinants of 5-HT2B receptor activation and biased agonism

    Get PDF
    Serotonin (5-hydroxytryptamine; 5-HT) receptors modulate a variety of physiological processes ranging from perception, cognition and emotion to vascular and smooth muscle contraction, platelet aggregation, gastrointestinal function and reproduction. Drugs that interact with 5-HT receptors effectively treat diseases as diverse as migraine headaches, depression and obesity. Here we present four structures of a prototypical serotonin receptor—the human 5-HT2B receptor—in complex with chemically and pharmacologically diverse drugs, including methysergide, methylergonovine, lisuride and LY266097. A detailed analysis of these structures complemented by comprehensive interrogation of signaling illuminated key structural determinants essential for activation. Additional structure-guided mutagenesis experiments revealed binding pocket residues that were essential for agonist-mediated biased signaling and ÎČ-arrestin2 translocation. Given the importance of 5-HT receptors for a large number of therapeutic indications, insights derived from these studies should accelerate the design of safer and more effective medications. © 2018, The Author(s)

    The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States

    Full text link

    The formation of crystalline P3HT fibrils upon annealing of a PCBM : P3HT bulk heterojunction

    No full text
    The influence of a, thermal treatment on the morphology, redox and the photoconductive properties of a non-contacted, 50 nm thick blend film (50:50 wt.%) of [6,6]-phenyl C-61-butyric acid methyl ester ('PCBM') and poly(3-hexyl thiophene) ('P3HT') spin-coated from chloroform, has been investigated. To this end, transmission electron microscopy (TEM), electrochemistry and the time-resolved microwave conductivity (TRMC) techniques were applied. After annealing the film for 5 min at 80 degrees C, TEM images show the formation of crystalline fibrils consisting of P3HT with a more ordered packing of the polymer chains, which is also reflected in the changes observed in the optical spectrum. Cyclic voltammograms show a 0.2 V positive shift of the oxidation potential of the polymer in the blend upon annealing. Furthermore, a large increase of the photoconductivity, due to an enhancement of the hole mobility in these crystalline P3HT domains from 0.0056 cm(2)/s for the non-annealed sample to 0.044 cm(2)/Vs after annealing is observed. In contrast, the temporal shape of the photoconductivity, with typical decay half-timers tau(1/2) of 1 mu s for the lowest excitation intensities, is unaffected by the temperature treatment. We suggest that after photoinduced charge separation the positive charge carriers are localized on the crystalline fibrils. Non-ordered regions around these crystalline fibrils act as energetic barriers for the positive charge carriers. The release time of the holes will be the rate limiting step for recombination or trapping of the photoinduced charge carriers. (c) 2005 Elsevier B.V All tights reserved

    The effect of thermal treatment on the morphology and charge carrier dynamics in a polythiophene-fullerene bulk heterojunction

    No full text
    The influence of various thermal treatment steps on the morphology and the photoconductive properties of a non-contacted, 50 nm thick blend (50:50 wt.-%) of [6,6]-phenyl C61-butyric acid methyl ester (PCBM) and poly(3-hexyl thiophene) (P3HT) spin-coated from chloroform has been studied using transmission electron microscopy (TEM) and the electrodeless time-resolved microwave conductivity technique. After annealing the film for 5 min at 80 ?C, TEM images show the formation of crystalline fibrils of P3HT due to a more ordered packing of the polymer chains. The thermal treatment results in a large increase of the photoconductivity, due to an enhancement of the hole mobility in these crystalline P3HT domains from 0.0056 cm2 V-1 s -1 for the non-annealed sample to 0.044 cm2 V-1 s -1 for the sample annealed at 80 ?C. In contrast, the temporal shape of the photoconductivity, with typical decay half-times, 1/2, of 1 s for the lowest excitation intensities, is unaffected by the temperature treatment. Further annealing of the sample at 130 ?C results in the formation of three different substructures within the heterojunction: a PCBM:P3HT blend with PCBM-rich clusters, a region depleted of PCBM, and large PCBM single crystals. Only a minor increase in the amplitude, but a tenfold rise of the decay time of the photoconductivity, is observed. This is explained by the formation of PCBM-rich clusters and large PCBM single crystals, resulting in an increased diffusional escape probability for mobile charge carriers and hence reduced recombinatio
    • 

    corecore